
MAIDENiso v4 Documentation

The MAIDENiso developer team

February 7, 2023

1

Lead author

Ignacio Hermoso de Mendoza1,2

Contributing authors

Fabio Gennaretti3, Aliénor Lavergne4, Guillermo Gea-Izquierdo5,6, Marceau Baradoux3,
Lucie Nina Barbier3

First model developers

†Laurent Misson7 (MAIDEN), Pierre-Alain Danis8 (isotopic module)

Current developers

Guillermo Gea-Izquierdo5,6, Etienne Boucher1,2, Fabio Gennaretti3, Aliénor Lavergne4,
Ignacio Hermoso de Mendoza1,2, Joel Guiot9, Laia Andreu-Hayles10,11,12

Affiliations

1Centre de Recherche sur la dynamique du système Terre (GEOTOP), Université du Québec à

Montréal (UQAM), Canada

2Centre d’études nordiques (CEN), Université Laval, Canada

3Institut de Recherche sur les Forêts (IRF), Université du Québec en Abitibi-Témiscamingue (UQAT),

Canada

4Carbon Cycle Research Group, Space and Atmospheric Science, Physics Department, Imperial College

London, United Kingdom

5Instituto Nacional de Investigación y Tecnoloǵıa Agraria (INIA), Spain

6Consejo Superior de Investigaciones Cient́ıficas (CSIC), Spain

7Université de Montpellier, France

8Office Français de la Biodiversité, France

9CEREGE, Aix-Marseille University, CNRS, IRD, France

10Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University, USA

11Ecological and Forestry Applications Research Centre (CREAF), Spain

12Catalan Institution for Research and Advanced Studies (ICREA), Spain

Contents

I User Guide 7

1 Overview 8

1.1 Preamble . 8

1.2 First User Manual . 9

2 Installation 10

2.1 Installing a C++ compiler . 10

2.1.1 Windows installation . 10

2.1.2 MacOSX installation . 12

2.1.3 Ubuntu installation . 14

2.2 Downloading MAIDENiso . 14

2.3 Compiling MAIDENiso . 14

3 Running MAIDENiso 16

3.1 Inputs . 16

3.1.1 Inmet file . 16

3.1.2 Inpar file . 17

3.2 Outputs . 19

4 The simulation process 21

4.1 State and process variables . 21

4.2 Initial conditions and steady state . 22

4.3 Run, training, and simulation . 22

2

CONTENTS 3

5 The C++ code 24

5.1 Files . 24

5.2 Functions . 25

5.3 Variables . 27

5.3.1 Structured variables . 28

5.3.2 Use of pointers in functions . 29

5.4 Modifying the code . 30

5.4.1 Best practices . 30

5.4.2 Adding an element . 31

6 Troubleshooting 37

6.1 Segmentation fault . 37

6.2 NaN or strange values in the output files 37

6.3 Messed-up time fields in output files . 38

II Technical Description 40

7 Introduction 41

7.1 Model history . 41

7.1.1 New developments in MAIDENiso v4 42

7.2 Time notation . 44

8 Atmosphere 46

8.1 Input meteorology . 46

8.1.1 Temperature . 46

8.1.2 Precipitation . 47

8.2 Atmospheric pressure . 47

8.3 Potential evapotranspiration . 47

8.4 Humidity . 48

8.5 Canopy layer conductance . 49

9 Radiation 51

9.1 Transmitance . 51

CONTENTS 4

9.2 Sky proportion . 53

9.3 Daily Radiation . 54

9.4 Dew temperature . 56

10 Throughfall 58

10.1 Precipitation . 58

10.1.1 Solid/Liquid precipitation . 58

10.1.2 Snow blow . 59

10.1.3 Direct precipitation . 60

10.2 Canopy water . 60

10.2.1 Canopy interception . 60

10.2.2 Canopy evaporation . 61

10.2.3 Canopy drip . 63

11 Surface hydrology 64

11.1 Snow . 64

11.1.1 Snow pack dynamics . 64

11.1.2 Snow water . 65

11.2 Infiltration and runoff . 67

11.3 Soil water . 67

11.3.1 Hydrological properties . 67

11.3.2 Numerical solution . 70

11.4 Soil evaporation . 74

11.5 Snow evaporation/sublimation . 75

11.6 Thawed root threshold . 76

12 Soil and snow temperatures 77

12.1 Thermal properties of soil and snow . 77

12.1.1 Thermal conductivity . 77

12.1.2 Heat capacity . 79

12.2 Thermal conduction . 80

12.3 Phase change . 83

CONTENTS 5

13 Isotopes 85

13.1 Carbon isotopes . 85

13.1.1 Discrimination against C isotopes 85

13.1.2 Isotopic composition of carbon stored 85

13.1.3 Isotopic composition of tree rings 86

13.2 Water isotopes . 86

13.2.1 Isotopic composition of precipitation 87

13.2.2 Isotopic mixing . 87

13.2.3 Fractionation processes . 89

13.2.4 Tree-ring cellulose . 91

14 Phenology 94

14.1 Phenology phases and allocation periods 94

14.2 Phenological phases . 94

14.2.1 Phase transitions . 95

15 Carbon allocation 97

15.1 Autotrophic respiration and NPP . 97

15.2 Tree carbon pools . 97

15.2.1 Leaf Area Index . 98

15.3 Canopy target . 98

15.3.1 Mediterranean model . 99

15.3.2 Boreal model . 100

15.4 Yearly Carbon demand . 100

15.5 Leaf losses . 101

15.6 Carbon allocation periods . 101

15.6.1 Period transitions . 102

15.7 Carbon allocation rules . 103

15.7.1 Winter allocation . 103

15.7.2 Spring allocation . 103

15.7.3 Summer allocation . 104

15.7.4 Fall allocation . 105

CONTENTS 6

16 Photosynthesis 106

16.1 Photosynthesis model . 106

16.2 Stomatal conductance model . 108

16.3 Scaling photosynthesis from leaf to canopy: a two canopy layers approach 109

16.4 Transpiration . 110

A MAIDENiso outputs 117

Part I

User Guide

7

Chapter 1: Overview

1.1 Preamble

MAIDENiso (Modelling and Analysis in Dendroecology + isotopes) is a mechanistic,
process-based model simulating the physical and physiological processes of a virtual
tree and its environment. MAIDEN simulates the water and carbon fluxes exchanged
between forests and the atmosphere, including the influence of phenology on the pro-
duction and allocation of carbon to different parts of the tree. Because it requires a
very limited number of meteorological inputs, the application of the model is possible
in regions where data are scarce. MAIDENiso provides two main advantages over other
process-based models:

1. The outputs are directly comparable to tree-ring proxies, in addition to carbon
and water ecosystem fluxes.

2. It is an isotope-enabled model, allowing users to track down the origin of the
climate signal recorded therein.

The original version of the model, MAIDEN [Misson, 2004], was specifically de-
signed to improve the interpretation of tree-ring proxies based on our knowledge about
ecophysiological processes and relationships between climate and tree growth. The
isotope-enabled version, MAIDENiso v1 [Danis et al., 2012], incorporates calculations
of the stable isotopic composition of oxygen (δ18O) and carbon (δ13C) in the different
components of the tree. MAIDEN was originally created for tree species in Mediter-
ranean climates, and it has been optimized for Quercus petraea (Matt.) Liebl. and 12
Mediterranean species [Misson, 2004, Gaucherel et al., 2008, Boucher et al., 2014, Gea-
Izquierdo et al., 2015]. Since then, the phenology and allocation modules have been
developed in relation to climatic drivers [Gea-Izquierdo et al., 2015], the phenology
and physiological processes have been adapted to simulate tree radial growth in boreal
northeastern American forests [Gennaretti et al., 2017] and used to simulate tree-ring
cellulose δ18O in boreal and temperate forests of eastern Canada and southern South
America [Lavergne et al., 2017]. The latest version, MAIDENiso v4 [Hermoso de Men-
doza et al., 2022], incorporates a thermal module and an update to the hydrological
module to incorporate a snow layer and ice layers for the soil and the canopy.

8

CHAPTER 1. OVERVIEW 9

1.2 First User Manual

This is the first User Manual ever written for MAIDENiso. With this document, we aim
to guide new users towards using MAIDENiso without the need of figuring everything
out, as previous users had to do.

Chapter 2: Installation

2.1 Installing a C++ compiler

MAIDENiso is a C++ project. Interpreted programming languages (like R, Python or
Matlab) are directly read and executed by an interpreter and therefore do not need to
be compiled. Instead, compiled programming languages like C++ must be translated
into machine code that the machine can execute, via the process known as compilation.
Therefore, the first step towards installing MAIDENiso is to install a C++ compiler
that can interpret the code, and create an executable appropriate for your machine.

There are many C++ compilers, here we will guide you towards installing GCC (the
GNU Compiler Collection) in three different Operating Systems: Windows, MacOSX
and Ubuntu.

2.1.1 Windows installation

For Windows, we recommend the installation of MinGW (Minimalist GNU for Win-
dows). You can do that by following these steps:

1. Download the MinGW installation manager. You can visit the MinGW web-
site (https://www.mingw-w64.org/downloads/) for a specific package, or down-
load directly from their repository in SourceForge: https://sourceforge.net/

projects/mingw/

2. Double click and open the .exe MinGW file and click install. It will automatically
start downloading all the setups for the MinGW.

3. After all of the setup click Continue. Now the MinGW installation manager will
pop up.

4. In the installation manager right click on mingw32-gcc-g++ (and the other op-
tions if you also want to install them) and then click Mark for Installation.

10

https://www.mingw-w64.org/downloads/
https://sourceforge.net/projects/mingw/
https://sourceforge.net/projects/mingw/

CHAPTER 2. INSTALLATION 11

Figure 2.1: MinGW installation manager

5. In the Installation, option-click Apply changes. And then select Apply. It will
start downloading all the files (it will take several minutes). After finishing click
on Close.

Now MinGW is installed, but if you try opening the terminal and typing “gcc”,
terminal will say that it does not recognize this command. The reason is that MinGW
does not only need to be installed, it also needs to be added to the “path” environment
variable of your system. This is, when you type any command, it looks in this “path”
looking for binary files with the name of that command to know what to do.

1. Go to the C drive on your device and search for the MinGW folder. And in the
MinGW folder go to the bin folder and copy its path.

2. Go to the control panel then go to System then Advanced system settings and
then Environment variables. It may also work to simply search “environment
variables” in the the search button of Windows.

Figure 2.2: Environment variables

CHAPTER 2. INSTALLATION 12

3. In the system variables search for path and then select Edit. Now add a new path
to it by clicking New. Now paste the path from step 1 and click ok.

Figure 2.3: System path

Now MinGW is installed and linked. When running “gcc” in terminal, it will not
tell you that the command is unrecognized. Instead, it will protest because you did not
specify any input files (which files should be compiled). This is good, because now we
can proceed to downloading MAIDENiso and compiling it.

2.1.2 MacOSX installation

For MacOSX, installing GCC is easier, we can do that by using MacPorts. It will likely
work for later versions of GCC as well. Just substitute “gccx” for “gcc5”, where “x” is
the desired version.

1. Download and install Xcode from the Mac App Store.

2. Download and install the MacPorts “pkg” installer appropriate for your OS ver-
sion (e.g., Mavericks is 10.9. Go to “Apple menu ¿ About This Mac” if unsure):
Installing MacPorts.

3. Open a Terminal window and enter “sudo port -v selfupdate”.

4. Enter your password, and wait for the update to finish.

CHAPTER 2. INSTALLATION 13

5. Once finished, enter “sudo port install gcc5”.

6. Enter your password if needed. It may take an hour or longer for the download
and compile to complete.

7. Once the installation is complete, attempt to compile a C++14 source file using
the following command: “g++-mp-5 -Wall -std=c++14 Program.cc -o Program”.
Note there is a hypen (-) between “g++” and “mp”.

Another option is to use homebrew (brew):

1. Download and install Xcode from the Mac App Store.

2. Download and install homebrew. You can do this from the command line by
running:

ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)"

3. Make sure homebrew is up to date by running in command line:

brew update

4. Update the actual packages (to match the versions in the updated local git repos-
itory) by running in command line:

brew upgrade

5. Now get information on GCC versions by running:

brew info gcc

6. Now install GCC! Run in command line:

brew install gcc

7. Finally, remove previous application/dependency revisions, thus saving consider-
able space, by running:

brew cleanup

Either way, now you should have GCC installed and ready to compile.

CHAPTER 2. INSTALLATION 14

2.1.3 Ubuntu installation

Finally, let us see how to install GCC in Ubuntu. To be able to add new repositories
and install packages on your Ubuntu system, you must be logged in as root or user with
sudo privileges. The steps are:

1. Start by updating the packages list:

sudo apt update

2. Install the “build-essential” package (which includes a bunch of packages including
gcc, g++ and make.) by typing:

sudo apt install build-essential

3. To validate that the GCC compiler is successfully installed, use the ¡gcc –version
command¿ which prints the GCC version:

gcc --version

Now GCC is installed and ready for use.

2.2 Downloading MAIDENiso

The MAIDENiso developer team mantains a webpage under the Université du Québec
en Abitibi-Temiscamingue (UQAT), https://dendro-eco.uqat.ca/maiden/. This is
the main webpage where the publicly available content related to MAIDENiso is re-
leased. This includes the published versions of the code, which are available in a Zenodo
repository from where anybody can download the code.

MAIDENiso v4, the version of MAIDENiso that this user manual was written for
(the model with snow module released on October 2021), can be found in https:

//zenodo.org/record/5597877. To download it, simply download all the files in this
Zenodo repository.

2.3 Compiling MAIDENiso

MAIDENiso is a C++ program composed of several source code files (.cpp) and libraries
(.h). While compiling single-file programs is quite easy, the compilation of multi-file
programs (called projects) requires a rather complicated command, which is coded
inside a makefile. A makefile is a file (by default named “Makefile” or “makefile”)

https://dendro-eco.uqat.ca/maiden/
https://zenodo.org/record/5597877
https://zenodo.org/record/5597877

CHAPTER 2. INSTALLATION 15

containing a set of directives used by a make build automation tool to generate a
target/goal. In our case, it contains the call to the compiler with the appropriate flags
and the list of files to be included in the compilation. It looks like this:

c++ -o executable file1.cpp file2.cpp ...

Along with the .cpp and .h files that you downloaded with MAIDENiso, you will
notice two additional files: runme.bat and Makefile. These files contain the full in-
struction to compile MAIDENiso, you use one or the other depending on the Operating
System of your machine. Makefile is used for UNIX (MacOSX and UBUNTU) while
runme.bat is used in Windows:

• Windows: From the command line, go to the folder where you downloaded all the
MAIDENiso files. Then run:

runme.bat

This will run the commands inside runme.bat. If the compilation succeeds, an
executable file MAIDEN.exe will be created.

• UNIX: From the command line, go to the folder where you downloaded all the
MAIDENiso files. Then run the command “make”. This will automatically look
for a file called “Makefile” or “makefile” (as the one included in MAIDENiso)
and run it. If the compilation succeeds, an executable file called “a.out” will be
created.

Alternatively, you can perform the compilation from within an Integrated Develop-
ment Environment (IDE). This is an editor program, with utilities that help coding and
visualizing code. Examples include Code::Blocks, Dev-C++, or XCode (for MacOSX).
Having an IDE will make easy to define a project to include all the MAIDENiso files,
and automatically create and run the appropriate Makefile.

Regardless of how you do it, you will obtain an executable (binary) file. This will
be the MAIDENiso executable.

Chapter 3: Running MAIDENiso

3.1 Inputs

Once the executable exists, MAIDENiso can be run. The runs happen within the sim-
ulation directory/folder, which is always the (current) working directory. MAIDENiso
is executed by calling the executable file, which can be done remotely (the executable
does not need to be inside the simulation folder). Once the executable is called, it will
look for a set of input files within the working directory. These files must have these
exact names, and their presence is absolutely necessary to run MAIDENiso:

• “inmet.txt”: The input meteorology file. See subsection 3.1.1.

• “inpar2.txt”: The input parameter file. See subsection 3.1.2.

In MAIDENiso v4 we introduced an optional file (whose presence can be detected
by MAIDENiso, but nothing bad happens if it cannot be found):

• “exportflags.txt”: This file specifies which output files will be exported, using
a series of flags (1 for export, 0 for no export) for each of the possible output files.
MAIDENiso expects these flags to be in a particular order (we typically add a
comment with the name of the flag, but MAIDENiso does not read this, so do not
change the order of the lines). If this file is not found, MAIDENiso will assume
that all outputs should be exported. Writing all the outputs takes as much time
as the simulation process itself, therefore consider using this file to export only
the outputs of interest and saving a lot of runtime.

3.1.1 Inmet file

The input meteorology file “inmet.txt” contains several columns standing for different
meteorological fields. Previous to MAIDENiso v4, a global integer called meteo site
(defined in Constants.h) determined what fields were expected to be found in the inmet
file. Posterior versions use of the header of the inmet file to tell which are the fields to
be read from it. The possible headers are:

16

CHAPTER 3. RUNNING MAIDENISO 17

• year-day-tmax-tmin-rad-prec-rhavg-wind-CO2.

• year-day-tmax-tmin-prec-CO2.

• year-day-tmax-tmin-prec-CO2-d18Op-d18Ov.

• year-day-tmax-tmin-prec-CO2-d13C.

• QPFFN-XXXX-XXXX-Obs-Adjusted-No-RIEN. This is a relic from ini-
tial development phases, the name coming from the a standardized system of
naming variables in French meteorological stations. It is functionally equal to
year-day-tmax-tmin-prec-CO2-d13C.

Each of these headers identifies the variables that are supposed to follow the header,
each variable as a column. These variables are described in Table 3.1.

VARIABLE UNITS DESCRIPTION
year year Year
day day Day of the year
tmax ◦C Atmospheric maximum temperature
tmin ◦C Atmospheric minimum temperature
rad W m−2 Daily radiation
prec cm Precipitation
rhavg % Relative humidity
wind m s−1 Wind speed
CO2 ppm Atmospheric concentration of CO2

d18Op h Precipitation δ18O
d18Ov h Atmospheric water vapor δ18O
d13C h Atmospheric δ13C

Table 3.1: Possible fields in the input meteorology file.

Note that MAIDENiso does not accept leap years, and no gap may exist in the
meteorological data, which must have 365 days every year, for every single year of the
run. It must also match exactly the run years specified in the input parameter file
by the parameters year0 and yearn, which specify the first and last year of the run,
respectively (see subsection 3.1.2).

3.1.2 Inpar file

The input parameter file is called “inpar2.txt”, the name including a “2” as a relic
from development. It contains a number of rows (121 as for the current date) defining
the values of the model parameters. MAIDENiso expects these parameters to be in a
specific order, as it does not read anything from each row except for the first numerical
value (separated by space/tab). This allows to write anything after the value of each
parameter, for instance the name of the parameter.

CHAPTER 3. RUNNING MAIDENISO 18

It is important to note that not all of these parameters written inside the inpar
file are used, depending on what model configuration we are using. Many of the pa-
rameters are simply site parameters that define the geographical location of the site,
the simulation environment (local characteristics such as soil composition), and the
time frame of the simulation (the period for which outputs will be written) and the
run. Other parameters control the simulation within specific modules or functions (e.g.
photosynthesis or isotopes). This means that not all parameters are used, for instance
δ18O calculations are deactivated by having the parameter “d18O flag” set to 0, and
therefore all the other parameters controlling δ18O calculations will not be used.

Given the high number of parameters in the inpar file, we do not include a table of
parameters in this document. Instead, a file called “Parameters.xlsx” includes a detailed
description of all the parameters, including their units, initialization values, symbols
used in the code and the parameter file, and the order in which the parameters were
written by the current and previous versions of the code. Here we will only describe
the parameters that control the time, seen in Table 3.2. These describe the start and
end of the simulation and the run, concepts we explain in section 4.3.

VARIABLE UNITS DESCRIPTION
ndays days Number of days of the run
year0 year Starting year of the run
yearn year End year of the run
year0 sim year Starting year of the simulation
yearn sim year End year of the simulation

Table 3.2: Time parameters in the input parameters file.

The parameter ndays is arguably the most important one, as it is directly used for
the model to know just how much memory should allocate to all the variables. The
parameters in Table 3.2 have two constrains that the user must take into account to
avoid errors:

• The parameters yearn and yearn sim should always be equal. yearn >
yearn sim means the run continues after the simulation, but because only the
simulation is exported, it runs for nothing and just wastes time. On the other
hand, if yearn < yearn sim the model will try to export outputs beyond the end
of the run, for which memory was not allocated, and an error will happen.

• The parameter ndays should always be ndays = 365 × (yearn − year0 + 1),
because the run always start on 1st January year0 and ends on 31st December
yearn.

The two constrains means that the five time parameters could just be reduced to three:
year0, year0 sim and yearn, the other two being a function of these three. The fact
that we have five parameters is a relic from development, when it was considered that the
model could be used to make runs shorter than a year, though this idea was abandoned

CHAPTER 3. RUNNING MAIDENISO 19

without getting rid of the extra parameters. MAIDENiso v4 still requires the user to
specify the five parameters in Table 3.2, so the user must be careful to respect these
constrains to avoid errors.

File nomenclature

To keep track of the multitude of input files that can be accumulated for different sites
or datasets, it is recommended to keep a standardized naming system. The components
of this nomenclature system should be:

• Site: The name or code of the site that MAIDENiso is attempting to simulate.
For example, the site of Caniapiscau in the province of Quebec could be called
“QC-CAN”.

• Dataset: The name of the dataset where the meteorological data has been taken
from. For example, if the data was taken from a meteorological station, it could
be “stations”, or if it was taken from the North American Reanalysis, it should
be called “NARR”.

• Version: If there is more than one version of this data (some meteorological field
could have been corrected, or a parameter changed), you can add a unique code
to differentiate different versions. For example, “v1”, “v20200731”, or “vIH”.

As inmet and inpar files are typically coupled, this nomenclature also helps to keep
track and avoid mixing them. For example, the input files corresponding to the Ca-
niapiscau site, with data taken from the North American Reanalysis, modified by IH, are
identified as “inmet NARR QC-CAN vIH.txt” and “inpar NARR QC-CAN vIH.txt”.

Note however that this nomenclature system is completely optional and it is only a
suggestion to the user. It is not integrated in the functioning of MAIDENiso.

3.2 Outputs

The output of MAIDENiso is organized into several output files, roughly organized by
the module they correspond to. It is also possible for the same output to appear in two
different output files. Some of the output variables are yearly, most of them are daily.
These output files are:

• outalloc d: Daily allocation values.

• outalloc y: Yearly allocation values.

• outd2H: Daily δ2H values.

CHAPTER 3. RUNNING MAIDENISO 20

• outd13C d: Daily δ13C values.

• outd13C y: Yearly δ13C values.

• outd18O d: Daily δ18O values.

• outd18O y: Yearly δ18O values.

• outmet: Daily meteorological values.

• outphenol: Daily phenological values.

• outphoto: Daily photosynthesis values.

• outrad: Daily radiation values.

• outroot: Daily root values.

• outsim: Yearly summer stem allocation.

• outsnow: Daily snow values.

• outsoil: Daily soil values.

• outsoilev: Daily soil evaporation values.

• outtemp: Daily temperature values.

• outwatbalance: Yearly water balance values.

• outwater: Daily water values.

• outcustom: Custom files for user defined outputs.

The output files take a considerable portion of the run time to be written. Because
more often than not these outputs are not needed by the user, the unneeded output files
should be deactivated. In MAIDENiso v1 and previous versions, this was not possible,
but in MAIDENiso v2 and MAIDENiso v3 this could be done by setting to 0 the
corresponding flags located inside Maiden.cpp (e.g. outmetPrint=1) and compiling the
program again. The optional input file “exportflags.txt” introduced with MAIDENiso
v4 can be used to set these flags without needing to modify the code directly. While
it is a good idea to only export the outputs you need, it is recommended to do a test
run with all output files active before launching a large series of runs. This should be
done to quickly check for flagrant problems in the output files (like missing outputs or
“nan” values), or to run general diagnostics on the output with an external script.

A detailed description of the output variables can be found in Appendix A.

Chapter 4: The simulation process

4.1 State and process variables

To understand how MAIDENiso works, it is important to make a distinction between
two types of variables:

• State variables: Variables that define the state of the system at a single moment
in time.

• Process variables: Variables that describe transitory quantities associated to a
process.

To visualize this, suppose we want to describe how much water there is in the ground
at a particular instant. This will be fully described by the variables that describe
the amount of liquid water and solid water in every layer, therefore, these are state
variables. The variables that describe how much water moves from one layer to another
do not describe this, but are transitory quantities that depend on the state variables,
and determine the state variables for the next point in time. These are thus process
variables.

The set of all state variables conform what we can call “the state of the system”.
The set of state variables at time t determine the process variables (all except for the
model inputs, which are process variables forced into the system) at time t. The set of
all process variables determine the state variables at time t+1. Thus, the model moves
the state of the system from one point in time to the next, passing through the process
variables:

state[t]→ process[t]→ state[t+ 1]...process[t+ n− 1]→ state[t+ n]

This distinction between the two types of variables is important from a theoretical
point of view. In a mechanistic model, the future state of the system must depend
exclusively on the state of the system in the past, and the forcings (inputs) to the
model during the time between the two states. On a practical level, the set of state
variables can be taken to fully determine the future states.

In MAIDENiso v3 and MAIDENiso v4, a statistical model is used to determine some

21

CHAPTER 4. THE SIMULATION PROCESS 22

variables of the tree (specifically how much carbon it should allocate to the canopy)
based on a spline over the temperature and precipitation of all the meteorological period
used as input for the model. While this makes sense from a statistical point of view, it
does not make sense mechanistically, as it invalidates the mechanistic rules and allows
the tree to “act” based on the future. Therefore, these two versions are not purely
mechanistic, but in small part statistic. The substitution of this allocation model for
another one that is mechanistically valid can be expected for future versions of the
model.

4.2 Initial conditions and steady state

We define the initial state state[0] as the state of the system (this is, the values of the
state variables) at t = 0, the first time-step of the run. Because there are no previous
values the initial values are arbitrary and lack any justification.

Because the state[t + 1] is based on state[t], we can not expect state[t + 1] to
make sense if state[t] does not. However, when forcing the model with the particular
meteorology of one site, the state of the system drifts slowly but surely towards a state
more defined by the forcings than the initial state. Therefore, it is possible to cycle
one or a few years of meteorological forcing to make a transition towards a state in
dynamical quasi-periodic equilibrium, called the steady state. This steady state is a
“reasonable” state of the system given the meteorological forcings, which we can use as
an alternative departing point instead of the initial state.

There is no strict definition to determine that the state of the system has reached
the steady state. In practice, we run the model for 10-30 years before we assume that
the steady state has been reached. A more strict approach that the user can use would
be to monitor all the state variables of the system, and observe that this transition
towards a dynamic equilibrium has happened for all of them. It has to be noticed that
we approach this dynamical equilibrium asymptotically, and that we need an infinite
amount of time to reach it. Thus, an assumption has to be made that at some point in
time we are “close enough” to the steady state. This is a fairly standard approach used
by many models, including global climate models, when they lack a way of obtaining
initial conditions.

4.3 Run, training, and simulation

In order to be accurate, we distinguish three terms when we talk about the periods of
time that MAIDENiso is working with, based on the initial and steady states:

• Run: It is the whole period of time that MAIDENiso is run for, thus we call it
“run”.

CHAPTER 4. THE SIMULATION PROCESS 23

Figure 4.1: Diagram showing the theoretical increase in plausibility between the initial and steady
states, which are use a departing points of the training (and the run) and the simulation period,
respectively.

• Training: It is the period between the initial state and what we assume to be
the steady state.

• Simulation: It is the period of time that is exported in the outputs, therefore
it is the period for which want to analyze the data, and it is supposed to depart
from a steady state.

Notice that run = training + simulation.

From the practical point of view, in MAIDENiso we specify the beginning and end
of the simulation and run periods. The run period is all the time that the model runs,
while the simulation period is the period of time that the model exports in the outputs.
The training period is just the difference between the starts of run and simulation
(having no training if the simulation is said to start at the same time as the run). The
endings of the simulation and the run should always be made coincidental, because the
simulation ending after the run will try to export outputs that were not run (producing
error), while the simulation ending before the run means that the model will keep
running after the simulation period (without exporting it). Future model versions may
disregard the parameter controlling the end of the simulation to solve this issue.

Also, notice that it is the run period that must coincide exactly with the input
meteorology. The length of the run is used to allocate memory for the input me-
teorology, therefore if the input meteorology is longer it will run out of space while
reading it (producing a segmentation fault), while if it is shorter it will leave the rest
of allocated space blank (using default values, either 0 or NA, producing nonsense).

Chapter 5: The C++ code

5.1 Files

MAIDENiso is composed of a number of files. Other than auxiliar files, there are two
main types:

• .cpp files: These contain the proper C++ code, this is the functions that define
MAIDENiso.

• .h files: Header files, files written in C++ code that contain declarations used on
several .cpp files in MAIDENiso.

When compiling MAIDENiso, the compiler is given instructions to include only the
.cpp files in the compilation. The .h files are instead “included” by declaring them at
the beginning of the .cpp files. The header files contained in the MAIDENiso code are:

• Maiden struct.h: Contains the definitions of structured variables.

• Maiden funct.h: Contains the definitions of functions.

• Constants.h: Contains the definitions of constants.

• Malloc.h: This is not exclusive to MAIDENiso but typically included with the
C++ compiler, however MacOSX systems seemed to be unable to find it. To
avoid this problem, we include it with the MAIDENiso files.

The .cpp files can include other libraries like stdlib.h, stdio.h, string.h, time.h, math.h,
float.h, iostream.h or fstream.h. These are all libraries included with the C++ compiler,
than unlike malloc.h do not have trouble being found in any operating system where
we tested MAIDENiso.

The .cpp files are:

• Maiden.cpp: Contains the main() function and the functions that read and
write outputs, allocate and free data, etc.

24

CHAPTER 5. THE C++ CODE 25

• MyFunctions.cpp: Contains miscellaneous auxiliary functions.

• allocation FG with GGI alloc.cpp (other versions will have this file with al-
ternative names in the fashion of allocation something.cpp): Contains the module
function allocation().

• meteorology.cpp: Contains the pre-run functions calc tair(), calc prcp(),
calc d18O2H PV(), snowpack(), calc srad humidity iterative() and the auxiliary
functions calc pet() (to calculate the potential evapotranspiration for aridity cor-
rections), atm pres() (to calculate the atmospheric pressure as a function of ele-
vation) and pulled boxcar() (to calculate a moving average of antecedent values
in an array).

• phenology.cpp: Contains the module function phenology().

• photosynthesis AL.cpp: Contains the module function photosynthesis().

• radiation.cpp: Contains the module function radtrans().

• root.cpp: Contains the module function root().

• soih2o iso.cpp: Contains the module function soih2o iso(), and the auxiliary
functions tridia() and tridia tem().

• soil evap.cpp: Contains the module function soil evap().

• throughfall iso.cpp: Contains the module function throughfall iso().

• transpiration.cpp: Contains the module function transpiration().

• TRC isotopes.cpp: Contains the module function TRC iso().

5.2 Functions

For clarity, we distinguish several kinds of functions in MAIDENiso depending on what
they do:

• The main() function: In any C++ program, the only function that is directly
executed.

• Core functions: Functions that are essential to the working of the C++ program,
but are not part of the MAIDENiso model itself. For instance, read inputs, write
outputs, allocate space, etc.

• Pre-run functions: These perform needed calculations previous to running the
main loop.

CHAPTER 5. THE C++ CODE 26

• Module functions: Contain the different modules of MAIDENiso that are run in
the main loop.

• Auxiliary functions: These perform calculations that may appear often in the
code. It is cleaner and simpler to write them once as a function and call them
instead of writing in the code the same calculation every time it is needed.

Every C++ program operates the same way. The program only executes directly
the function called main(), and no other. Every other function has instead to be called
from within the function main() to be executed, or from within another function that
is being executed.

The function main(), localized in Maiden.cpp, does the following:

1. Read input parameters (information needed to allocate space).

2. Allocate space to all variables.

3. Read input meteorology.

4. Execute the pre-run functions, that calculate the pre-run estimates.

5. Run the main loop of module functions, over ndays number of days.

6. Write the outputs.

7. Free space

It is to be noted that there is no initialization module in MAIDENiso v4. The
initialization of the state variables is done within the module functions.

The pre-run functions are calculated in this order:

1. calc tair(): Estimates daily air temperatures.

2. calc prcp(): Estimates daily precipitation.

3. calc d18O2H PV(): Estimate daily snowpack for radiation corrections.

4. snowpack(): Estimate daily snowpack.

5. calc srad humidity iterative(): Estimate short wave radiation and humidity.

The main loop runs the module functions (that constitute the different modules of
MAIDENiso), for every day of the run, in this order:

1. radtrans(): Calculates the projected leaf area and absorbed photosynthetic pho-
ton flux density for sunlit and shaded fractions of the canopy.

CHAPTER 5. THE C++ CODE 27

2. throughfall iso(): Calculates the partition of precipitation above ground into
different pools due to canopy interception.

3. soil evap(): Calculates evaporation from the snow or the soil.

4. photosynthesis(): Calculates photosynthesis, stomatal conductance and leaf
respiration of the tree.

5. transpiration(): Calculates the amount of water transpirated by the canopy.

6. soih2o iso(): Calculates the hydrology and temperature of the snow and ground
layers.

7. TRC iso(): Calculates the tree-ring cellulose isotopes (δ18O and δ13C).

8. phenology(): Controls the transition between phenological phases.

9. allocation(): Determines how much carbon is distributed to different parts of
the tree and autotrophic respiration.

10. root(): Calculates the root distribution in the soil layers.

5.3 Variables

Users with some experience in compiled languages like C, C++ or Fortran might already
be familiar with the concept of variables: these are containers to store data values. The
most basic way to classify variables is by their type, for example:

• int: Stores integers (whole numbers) without decimals, i.e. 12 or -26.

• double: Stores floating point numbers with decimals, i.e. 2.34 or -5.00.

• char: Stores single characters, such as ‘a’ or ‘B’. Char values are surrounded by
single quotes.

• string: Stores text, such as “Hello World”. String values are surrounded by
double quotes.

• bool: Stores values with two states: true or false.

Another important aspect of variables for which they can be classified is their scope:

• Global variables: Defined outside all functions and valid for all the code. We
avoid using them in MAIDENiso because they may easily create confusion..

CHAPTER 5. THE C++ CODE 28

• Local variables: Defined within a function or block of code and only valid
within.

• Formal parameters: These are local variables in a function that are assigned
values from the function’s arguments.

In MAIDENiso global variables are normally avoided in favour of local variables and
constants (defined in Constants.h). In contrast to global variables, constants are un-
changeable and read-only, which makes them tidier to use. These are used for quantities
that are always and absolutely constant values, for instance physical or mathematical
constants like Π = 3.14159265.

Local variables are created when a function starts and only valid within the function,
being erased after the end of the function. Thus, a function called several times will
not remember the values of the local variables of the previous call. A typical example
is the use of int variables called i, j and k to use as loop indexes, such as:

int i=0;

for (i=0 ; i<ndays ; i++){

// some code

}

Code like this will work properly even though every function where there is a loop will
likely use a variable of the same name i.

5.3.1 Structured variables

Most variables in MAIDENiso, such as most formal parameters, are structured vari-
ables. Structures (also called structs) are a way to group several related variables into
one place. Each variable in the structure is known as a member of the structure. Unlike
an array, a structure can contain many different data types (int, string, bool...). Since
we have a great number of variables in MAIDENiso, structured variables are useful
to organize the variables by theme and pass them to functions with a single name.
The structure of the structured variables is defined in Maiden struct.h, as this example
shows:

typedef struct

{

double C_stem_init;

... //more than a hundred of parameters here

int meteo_site;

} param_struct;

CHAPTER 5. THE C++ CODE 29

Then this structure can be used to define a structured variable at the beginning of
the main() function:

param_struct par;

And we can now pass around a single structured variable “par” instead of many
individual variables.

5.3.2 Use of pointers in functions

The user may notice that some functions have arguments that are normal variable
names (for instance, My min(double value1, double value2)) while other arguments
(in particular structured variables) use pointers (denoted by the “*” symbol in the
declaration and definition and the “&” symbol when called), like read init(site struct
*site, param struct *par), called as read init(&site,&par). For users not used to C and
C++, this deserves some explanation. Let us take an example for the first kind of
function, without pointer arguments:

double My_min(double value1, double value2) // test ok 271008

{ return ((value1 < value2) ? value1 : value2); }

Here we see that the My min function takes value1 and value2, and with the function
return() returns value1 if value1 < value2, otherwise returning value2. Simple enough.

However, most functions you may add will not follow the classical structure of taking
several input, return one output. None of the pre-run and module functions do this,
instead they take pointers to structured variables as arguments (inputs) and change
these structured variables, using the return() function only to return a logical value (1
or 0) to indicate that the function finished successfully.

There is a reason the functions use pointers to variables instead of the variables
themselves: The arguments of the functions become formal parameters, which the
functions cannot change. These formal parameters act as local variables, and any
change the function does to them will not affect the original variable that was fed as
argument to the function. For example, if we have a function that adds 1 to the input
variable:

double Myfunction1(double myvar)

{myvar += 1;}

and in our code we run:

thisvar = 16;

Myfunction1(thisvar);

CHAPTER 5. THE C++ CODE 30

the variable “thisvar” will still have a value 16. In this particular example, an easy
solution would be to use return() to return the modified value:

double Myfunction2(double myvar)

{myvar += 1;

return(myvar)}

and running this code:

thisvar = 16;

thisvar = Myfunction2(thisvar);

Now “thisvar” will have a value of 17. However, we can only use return on a single ob-
ject. Unless we create an extremely complicated object that contains all the arguments
we may change to use it with return(), it is not realistic to use this approach. Instead,
we use pointers.

Using a pointer as argument is a good way of changing a variable while still being
able to pass it as argument to a function. We pass (point to) the memory address where
an object begins, then we change the contents of that section of the memory within the
function. When the function ends, the content of the object remains changed. Without
the pointer, the function is creating a new variable in other part of the memory, changing
that, and scraping it after it is done.

5.4 Modifying the code

New users may have the idea of introducing their own modifications to the MAIDENiso
code and test it for their own objectives. Here we provide a short manual for users not
fully experienced with C++ (a basic knowledge is assumed for users that are trying to
modify the code) on how to do it.

5.4.1 Best practices

When introducing a modification to the code, try to be organized an methodical by
following these recommendations:

• Try to maintain the style used in the rest of the code. It helps visualization and
understanding of the code for other users.

• Keep a log (an external text file) of your modifications.

• Document your modifications in the code itself by using (short) comments.

CHAPTER 5. THE C++ CODE 31

• Write in English (previous developers wrote code and comments in their respective
languages, resulting in a melange of English, French, Spanish, and Italian).

• Keep a safe and organized archive of your (working and stand-alone) modified
versions, so you can easily roll back if your latest modification fails, or you lose
your work because of software/hardware failure. You can do this easily with the
version control software Git (https://git-scm.com).

• Name your modified versions after the parent version, e.g. if you modify version X,
call the new version something like version X mod1.

• Make modifications one step at a time. For instance, if you want to modify two
modules, first modify only one into version X mod1, test it, and then modify the
second module into version X mod1 mod2.

• Test your version while comparing it to its parent version. It can help visualize
flagrant differences between the two versions that perhaps you did not expect.

5.4.2 Adding an element

5.4.2.1 Adding a global variable

Adding a global variable is easy. You just need to declare it in “Maiden.cpp”, before
the main() function, by adding a line like:

int global_variable;

5.4.2.2 Adding a constant

You can define a new constant in “Constants.h” by adding a line like:

#define MYCONSTANT 1234.5 //comment explaining what this is

Note here that we do not need to declare if the constant is an integer or a float, because
C++ does not need to know that to assign space to it. The constant is what it is.

Know that it is possible to declare constants whose value will be determined exter-
nally. One example would be the type of tree leaf, which is constant through the run
but we can define from the parameter file. This is done by having in “Constants.h” the
line

extern int exp_site;

https://git-scm.com

CHAPTER 5. THE C++ CODE 32

and in the function read init() that reads the input parameter file, we read the pa-
rameter exp site (as part of the structured variable called “par”) and assign it to the
constant exp site:

fscanf(inpar,"%i%*[^\n]",&par->exp_site);

exp_site = par->exp_site; // 1: Deciduous ; 2: Evergreen

Constants, just like global variables, can be used throughout the code without need-
ing to declare them inside every function you use them in, hence their utility. To iden-
tify constants in the code, we typically write them with capital letters (unless they are
externally defined constants).

5.4.2.3 Adding a local variable

Local variables are tidier that global variables, because you do not have to worry about
having declared something else of the same name somewhere else in the code. These
are used only inside the function they are declared, and you can have local variables of
the same name in other functions: they will have nothing to do with each other, and
will not interfere. These are simply declared at the beginning of a function by writing
first the type (integer, float, character, logical...) and name.

int function(){

int integer_variable;

double floating_variable=1.4;

integer integer_array[6];

}

In this example, the function has declared one integer variable, one floating variable
(write “double” to allocate double decimal digits as compared to “float”) and one integer
array of length 6 (in C++, elements of an array of n elements are numbered 0 to n-1).
Variables can be initialized in the declaration itself (“floating variable=1.4”), doing it
there or somewhere after depends on tidiness and convenience.

5.4.2.4 Adding a structured variable

When adding a new structured variable (a structure of variables), first you should
decide on what variables it should contain, this is what type of structure has. The
structure you want may already respond to an existing one, which are defined in the
library “Maiden struct.h”. If you want a new structure that does not correspond to
an existing one, you must define the type in “Maiden struct.h”. You can define a new
structure (in this example we call it “mystructure”) by adding this code (adapted to
your purposes) to the file:

CHAPTER 5. THE C++ CODE 33

typedef struct

{

int integer_variable

double float_variable

} mystructure_struct;

Additionally,

With the structure type defined, you have to declare the new structure in the func-
tion main() (found in Maiden.cpp). Definition of variables is done immediately at the
start of main(), where you will see the list of declarations of structured variables. Add
your new structure (called “mystructvar” in the example) at the end of the list by
adding:

mystructure_struct mystructvar

The structure type only needs to be defined once in “Maiden struct.h”, but note
that the same structure can be use for several structured variables:

mystructure_struct structure1

mystructure_struct structure2

Also note that to use the structure in any function that is not main(), you need to
add it to the arguments of the function. This means modifying code in several places:

• In the declaration of the function in “Maiden funct.h”, you must add the structure
type of the structure plus the internal name it will use inside the function (which
can be different than the name you defined it in main(), but in practice we always
use the same name to avoid confusion). If you had a function

int funct(oldvariables)

now it should look like:

int funct(oldvariables, const mystructure_struct *mystructvar)

Notice that the structured variable is introduced here with the symbol “*”, indi-
cating that is a pointer.

• Whenever you call the function, be in main() or within any other function, add the
name of the structured variable (the one you declared in main if in main(), or if
in another function the name it uses inside this function) to the list of arguments,
in the same order as in the declaration of the function. If you had

CHAPTER 5. THE C++ CODE 34

funct(oldvariables)

now it should be

funct(oldvars, &mystructvar)

Notice that the structured variable is introduced here with the symbol “&”, in-
dicating that we are passing a reference to an object (a pointer) rather than the
object itself.

• In the definition of the function, you will have to add the structure type of the
structure plus the internal name it will use inside the function, also in the same
order as in the declaration of the function. If you had

int funct(oldvariables)

now it will look like:

int funct(oldvariables, const mystructure_struct *mystructvar)

Notice that the structured variable is introduced here with the symbol “*”, indi-
cating that is a pointer.

5.4.2.5 Adding a variable to a structure

If you want to add a new variable (let us call it “newvar”) to an existing structure (let
us call it “structure struct”), make sure to do everything in this checklist:

• Declare the variable. Go to the structure you want to add it to, in
“Maiden struct.h”, and add it to the list. In front, you must add the type of
variable it is. For instance, if it is a float, add:

double newvar; //comment explaining what newvar is

• Allocate space for the variable. Suppose the variable will define some kind
of value that changes daily, therefore you want to to define a value for each day
of the run. You will have to do so for every structured variable that is using
the structure you are adding your variable to (let us suppose you only have one
structured variable “structvar” using the structure “structure struct”). Then you
will have to add this line inside the function data alloc() (in “Maiden.cpp”):

if (ok && !(structvar->newvar = (double*) malloc(ndays * sizeof(double))))

{printf("Error allocating (structvar->newvar)\n");ok=0;}

CHAPTER 5. THE C++ CODE 35

The function “malloc” allocates the space, we are simply telling it exactly how
much space we want. We are allocating the space needed for a double variable,
times the number of elements we have for this variable (the number of days), which
will be an array. We are also printing an error message in case the allocation fails.
Important: Notice that sometimes you must use ndays+1 instead of ndays, this
can be the case for state variables (see section 4.1). For instance, if we run the
model for ndays=1 day, we will have one initial value and one final value, this is
ndays+1.

• Initialize the variable. If the variable is a state variable, or something depends
on the value of this variable during the previous timestep, you will need to initial-
ize the values of the variable. You do that in data alloc() by looking for the right
initialization loop (for years, for days, for number of soil layers...) and adding this
line:

structvar->newvar[m]=0;

where m is the loop index.

• Free space after the end. To avoid running out of memory, the last thing
MAIDENiso does is to liberate the space allocated to the variables. Go to the
function data free() (in “Maiden.cpp”) and add this line:

free(structvar->newvar);

5.4.2.6 Adding a function

To add a function, you must first declare it in “Maiden funct.h”, specifying the argu-
ments that the function will take, separated by commas. To specify an argument, you
must write the type of argument it is, followed by the internal name (a local variable
will be created responding to that name). For instance,

double My_min(double value1, double value2); // PAD 161008

declares that a function called My min will take two arguments of type double, which
will be treated inside the function as local variables called value1 and value2. You must
also declare which type of number the function will return (int, double, void...) in front
of the name of the function.

Then you must define the function inside one of the .cpp files included in the com-
pilation instructions of MAIDENiso. If you define it in a new file, it will be necessary
to change the instructions to the compiler to include this file. Instead, try to avoid this
by adding the function to whichever of the existing files that has the most appropriate

CHAPTER 5. THE C++ CODE 36

name (for instance, a new root function should be added to “root.cpp”), using “Myfunc-
tions.cpp” for miscellaneous functions that do not fit elsewhere. This definition must
start the same way that the declaration, then followed by what the function actually
does, and close with the return function giving something back (it can be the result of
a simple calculation, or a “0” indicating that the function has finished successfully). In
our example:

double My_min(double value1, double value2) // test ok 271008

{ return ((value1 < value2) ? value1 : value2); }

Then calling the function in the code, make sure that the arguments are given in the
right order the function expects them to be in, that the type of the arguments match
the type of the variables used as arguments, and that the type of the variable fits the
argument to which it is assigned:

double a=1.2;

double b=1.5;

double c;

c = My_min(a,b)

Note that when using pointers as arguments, these must appear in the declaration
and definition of the function with the “*” symbol:

int read_init(site_struct *site, param_struct *par);

However when calling the function in the code, the pointer argument must be passed
using the “&” symbol:

read_init(&site,&par);

Chapter 6: Troubleshooting

This chapter addresses the known and most common issues encountered when running
MAIDENiso. If your trouble does not fit into any of those described here, please report
to the developers so this guide can be updated.

6.1 Segmentation fault

A segmentation fault is the least informative failure that can happen, because typically
no other information is given other than a segmentation fault has happened. However,
these are the main causes that can be identified:

• Not enough memory could be allocated to the job: This can happen when sub-
mitting jobs in a cluster, where you have to specify the memory allocated to a job
or go with a default that can be too low. If the run is long, the program may have
to allocate more memory than it is available. The failure will therefore happen in
the function data alloc() before the run even starts.

• Trying to write out of allocated space: This can happen if a variable was not
defined or allocated properly (therefore being too short), or if it was but bad
indexing tried to write outside of the allocated space (for instance, trying to write
in position 1001 of an array of length 1000). This kind of error is typical after
modifying the code, and will be due to sloppy coding. Another possibility is that
the parameter “ndays” was to low (it should be 365 times the number of years in
the run, which is “yearn” - “year0” + 1).

6.2 NaN or strange values in the output files

Sometimes MAIDENiso will run without apparent error, but looking at the outputs you
will find some that have NaN (not a number) values or completely absurd numerical
values. This kind of error is relatively easy to trace, as observing the daily outputs can
pinpoint the exact moment where the issue happens. It is also the most tedious error

37

CHAPTER 6. TROUBLESHOOTING 38

to trace, as it will likely require a lot of investigation to point out the exact point in the
code where the error happened. Notice that the fields “year” and “day” should not be
affected by this, and their values should not show anything out of the ordinary. If they
are, the problem is of a different nature (see “Messed-up time fields in output files”).

In this kind of error, it is typical for the program to behave normally until a given
day, which should be reflected in the output files. If a period of training is included
in the run, it is possible that the output files show the strange values from the first
recorded day, meaning the error happened during the training. Change the parameter
“year0 sim” to be equal to “year0”, thus integrating all the training in the simulation,
but most importantly including it in the outputs, which will allow you to see which was
the first day when strange values started to occur.

If you have made any change to the code, this is extremely likely to be the cause
of the error. Double-check these changes to make sure no divide-by-zero or other easy
mistakes were made. Otherwise, the best solution is to execute the program line-by-line
at the day where the error was located (or as tight as you could locate the error). Some
developer programs allow to do this easily, but most developers will have to fill the code
with pauses and prints.

Another possibility is that the error is caused by the original code, but the model
was never run before under some particular circumstances that cause the error, and was
therefore never debugged. An example of this happened when using the model for the
first time at a latitude high enough that some winter days had no daylight, producing
a divide-by-zero error when dividing by the variable daylength. In this case, your must
contact the developer team identifying the error, so that the debugging of this error
will be included in subsequent versions of MAIDENiso.

6.3 Messed-up time fields in output files

Because the time fields (year and day) in the output files are exactly the values that
were read from the inmet file, these fields being wrong in the output indicates that the
problem lies with the inmet file. Most likely mistakes are:

• Wrong line terminators. This can happen when creating an inmet file in a DOS
system and trying to use it in a UNIX environment. You can check this with
the command “file inmet.txt” in Unix, which should show “ASCII text”. If in-
stead it shows “ASCII text, with CRLF line terminators”, then you must use the
command “dos2unix inmet.txt” to correct the line terminators.

• The number of meteorological fields does not correspond to the expectation. For
instance, if the program expects 7 fields (including year and day) but the inmet
contains 6, the 7th field of the first day will be mistakenly read from the 1st field
of the second day, and so on.

CHAPTER 6. TROUBLESHOOTING 39

• The header is wrong. The first line of the inmet file is the header. If it is not one
of the accepted values, or if the header is missing, the program will not read the
inmet file. Take into account that inmet files produced by some machines (like
Windows) can automatically create end-of-line (EOL) characters that will produce
trouble when using other machines (like Linux). Because these EOL characters do
not show (unless you specify it), what in appearance is a perfectly fine inmet file
will produce trouble. You can check the EOL easily, for instance with advanced
text editors like Notepad++, or using the “file inmet.txt” command in Linux.

Part II

Technical Description

40

Chapter 7: Introduction

7.1 Model history

The original version of the model, MAIDEN [Misson, 2004], was specifically designed
to improve the interpretation of tree-ring proxies based on our knowledge about eco-
physiological processes and relationships between climate and tree growth. The isotope-
enabled version, MAIDENiso [Danis et al., 2012], incorporates calculations of the stable
isotopic composition of oxygen (δ18O) and carbon (δ13C) in the different components
of the tree. MAIDEN was originally created for tree species in Mediterranean climates,
and it has been optimized for Quercus petraea (Matt.) Liebl. and 12 Mediterranean
species [Misson, 2004, Gaucherel et al., 2008, Boucher et al., 2014, Gea-Izquierdo et al.,
2015]. Since then, the phenology and physiological processes have been adapted to
simulate tree radial growth in boreal northeastern American forests [Gennaretti et al.,
2017] and used to simulate tree-ring cellulose δ18O in boreal and temperate forests of
eastern Canada and southern South America [Lavergne et al., 2017]. The latest version
of the model [Hermoso de Mendoza et al., 2022] incorporates a thermal module and an
update to the hydrological module to incorporate a snow layer and ice layers for the
soil and the canopy.

While this is the first technical description of MAIDENiso, a number of versions
have been developed and published during the years. The corresponding papers can be
consulted for information on those versions:

• MAIDEN [Misson, 2004]. The original model.

• MAIDENiso v1 [Danis et al., 2012]. Isotoped-enabled version of MAIDEN.

• MAIDENiso v2 [Gea-Izquierdo et al., 2015]. This version developed the phenology
and allocation modules in relation to climatic drivers.

• MAIDENiso v3 [Gennaretti et al., 2017]. This version adapts the model to boreal
species, the most important evolution in this regard being the addition of the
acclimation of photosynthesis to temperature.

41

CHAPTER 7. INTRODUCTION 42

• MAIDENiso v4 [Hermoso de Mendoza et al., 2022]. The current version de-
scribed in this document. This version incorporates thermal calculations and
updates the hydrology with snow and ice.

As a consequence of its development, MAIDENiso currently makes a difference be-
tween “boreal” (energy-limited) and “mediterranean” (water-limited) trees, a difference
that has to be explicitly specified by the user, and results in the use of different equations
and parameters throughout the model. Ideally, the model should be able to automati-
cally identify the site as either energy-limited or water-limited, and use a single set of
equations that automatically become different depending on the growth-limiting factor
of the environment. However, this has not yet been implemented in the current version
MAIDENiso v4. Therefore, be aware of the use of “boreal” and “mediterranean” in
the technical description, which in a practical sense mean “energy-limited” and “water-
limited”, respectively.

7.1.1 New developments in MAIDENiso v4

The development of previous versions are described in the relevant paper. MAIDENiso
v4 was developed by Hermoso de Mendoza et al. [2022] and here we describe the added
features.

MAIDENiso v3 and previous versions used a simple hydrological model that parti-
tions precipitation water into multiple fluxes (Fig. 7.1a). Precipitation is first divided
into canopy interception and direct precipitation. Evaporation is applied to the canopy
water and the remainder drips to the ground overnight, adding to direct precipitation
into throughfall. This throughfall infiltrates into the soil up to a maximum infiltration
(determined by a parameter) and the excess is added to runoff, which comes back the
next day, adding to that day’s throughfall (acting as a surface water storage, though
not subject to evaporation). Infiltration is the source of water for the soil layers, while
soil water is extracted by root absorption, evaporation from the top layer, and drainage
from the bottom layer. The movement of water between soil layers is determined with
Darcy’s law, as the solution to a tridiagonal system of equations. Soil water movement
is calculated hourly, while every other flux in the hydrology model and MAIDENiso is
calculated daily.

MAIDENiso v3 includes a “snowpack” function that estimates the growth and shrink
of snow as a function of precipitation and atmospheric temperature. This snowpack is
used to calculate an albedo that is used in the calculations of radiation. This however
is not a real snow model, and it does not interact with hydrology in any way. The
precipitation used to simulate the growth of the snowpack is not subtracted from the
throughfall in the hydrological model, and the melting of the snowpack does not release
water on the ground. In fact, MAIDENiso v3 does not consider the possibility of
snowfall or soil ice, and all hydrology works identically independently of atmospheric
temperature.

CHAPTER 7. INTRODUCTION 43

Figure 7.1: Main hydrological fluxes in MAIDENiso v3 (left) and MAIDENiso v4 (right).

The new MAIDENiso v4 expands the hydrological model of the previous versions
by adding a snow and ice component (Fig. 7.1b). Precipitation is now divided into
rain and snowfall, and the fluxes in which rainfall is divided before reaching the ground
have been duplicated for snow. Snowfall is divided into canopy interception and direct
snowfall. Sublimation is applied to canopy snow, which stays overnight in the canopy,
but can start dripping to the ground if temperatures exceed a given threshold. Canopy
snow drip and direct snowfall are added into snow throughfall, which is added directly
to the new snow layer. This snow layer grows from snow throughfall and decreases
from snow sublimation, but also can start thawing when temperatures rise above the
freezing point, creating liquid water within the snow layer.

The fluxes of liquid water have also been modified to work with the new snow system.
A portion of the liquid throughfall, determined by the fraction of the ground covered
by snow, hits the snow layer instead of the soil, adding to the snow storage of liquid
water. This water can percolate through the snow layer, adding to the portion of liquid
throughfall that hits the ground directly. This water is used to calculate infiltration and
runoff, but in contrast to the previous versions, infiltration is now calculated with the
hydrological properties of the top soil layer instead of being a parameter, while runoff
now leaves the system permanently. Snow water that exceeds the infiltration capacity
can remain in the snow layer if there is space for it, otherwise the excess is added to
runoff. The soil water model now accounts for ice content within each layer, which
occupies part of the available porous space and decreases the hydraulic conductivity of
the layer.

Finally, to allow the model to work with ice and snow, phase transitions between
solid and liquid water are calculated for the snow layer and the soil layers. This in turn

CHAPTER 7. INTRODUCTION 44

required to implement a thermal conduction model to calculate the energy fluxes in
these layers. This model is constrained at the top of the snow/soil column by the inter-
action with the atmosphere (which accounts for shortwave radiation, longwave radiation
and sensible heat flux) and at the bottom by a constant heat flux (taken as the crustal
heat flux value in the region). The thermal module then solves a tridiagonal system of
equations to obtain the layer temperatures at any time-step, and uses the excess/deficit
of energy above/below the fusion point to estimate melting/freezing of ice/water. In
addition to soil water movement, snow water movement, thermal conduction and phase
transitions are also calculated in an hourly basis.

The snowpack model used for the purposes of the radiation calculations is still used
in MAIDENiso v4. Radiation is calculated for every day in precedence to the main
loop of daily time-step. Therefore, it is not possible to substitute the snowpack with
the new snow model unless the radiation module is moved inside the main loop. There
is no technical reason why this could not be done, but it could potentially increase the
execution time of MAIDENiso, and therefore this decision should not be taken lightly.

7.2 Time notation

The equations described in this document characterize a multitude of quantities used
in MAIDENiso, many of which are defined for a particular time interval. To avoid
confusion and a possible overload of subindexes, it is convenient to define the notation
we follow to indicate that a particular quantity is defined as it is for a given time. In
general, we use the angle brackets [] to denote the time for which the quantity is defined.
As an example, the expression:

X[i] = X[i− 1] + Y ,

indicates that the quantity X at the time step i is defined as the quantity X at the
previous time step i− 1 plus another function Y .

There are different time intervals for which a quantity can be defined. In MAID-
ENiso, most quantities are defined daily, while a few are defined yearly. There exist as
well quantities defined hourly (in the case of the soil/snow hydrology) and quantities
that are defined only for specific days of the year (DOY). These different time intervals
are denoted with different symbols, and are defined for different numerical intervals:

• Year of the simulation y. This is an integer that runs in the interval [1, X], X
being the number of years defined for the simulation.

• Day of the simulation i. This is an integer that runs in the interval [1, 365 ·X].

• Day of the year DOY. This is an integer that runs in the interval [1, 365], and is
a function of i as:

CHAPTER 7. INTRODUCTION 45

DOY[i] = i− 365 · integer(
i

365
) .

To avoid making the notation tedious, most of the time we will generally not
write explicitly the time dependency of a quantity, i.e. we will write X instead
of X[i]. We will make the time dependency explicit, however, in cases when we want to
remark this dependency, or when we want to indicate that some quantity defined at a
time has a dependency on another quantity defined at a different time. Most notably,
the dependency will be made explicit in the definition of a quantity, in the left side of
the expression. Some examples:

• X[i] = Y +C ·Z: We define X, thus we explicitly write its dependence on i on the
left. The quantities Y , C and Z are defined somewhere else, thus we do not write
their dependencies here and it is implicit that it is the same as in their definition.

• X[i] = Y [i − 1] + C · Z: X depends on the Y from the previous time interval,
therefore we write the dependency of Y explicitly.

We can also use the notation X[i + 1
2
] to indicate an intermediate step in the cal-

culation of the quantity X. However, this is just a way to facilitate the description.
Quantities are only recorded at integer steps, and not in between.

Chapter 8: Atmosphere

8.1 Input meteorology

In MAIDENiso, we simulate the growth of a tree in a particular location, called the
“site”. The model demands a meteorological input, which should ideally correspond to
meteorological measurements taken at the same site, but this is usually not the case.
The model designates as the meteorological “base” the place where the input meteo-
rology is taken from, and corrects it based on the differences between the coordinates
of the site and the base.

8.1.1 Temperature

The temperature of the atmosphere is introduced as an input to MAIDENiso, via a
daily minimum temperature Tmin,base[i] and a daily maximum temperature Tmax,base[i],
corresponding to the meteorological base. These are corrected for the site, based on
the difference between the elevations of the base and the site, Hbase and Hsite (km). To
simplify the notation, temperatures at the site (TX,site, X being whatever) are denoted
without the “site” suffix (TX).

∆H = Hsite −Hbase , (8.1)

Tmin[i] ≡ Tmin,site[i] = Tmin,base[i] + ∆H · lrmin , (8.2)

Tmax[i] ≡ Tmax,site[i] = Tmax,base[i] + ∆H · lrmax , (8.3)

where lrmin = −3◦C/km and lrmax = −6◦C/km are the lapse rate corrections for the
minimum and maximum temperatures.

The average temperature of the atmosphere each day is calculated as:

Tavg[i] =
Tmax[i] + Tmin[i]

2
, (8.4)

while the daylight temperature (used for photosynthetic calculations) is:

Tday[i] = (Tmax[i]− Tavg[i]) · Tday,COEF + Tavg[i] , (8.5)

46

CHAPTER 8. ATMOSPHERE 47

where Tday,COEF = 0.45 is the daylight temperature coefficient.

8.1.2 Precipitation

The precipitation from the meteorological base qprecip,base is also corrected, using the
isohyet of the base and the site isohbase and isohsite:

qprecip[i] ≡ qprecip,site[i] = qprecip,base[i]
isohsite

isohbase

. (8.6)

From here, precipitation follows a complex path. It is first divided in solid (snowfall)
an liquid (rainfall) fractions depending on atmospheric temperature. Then, each of
these is divided into fractions reaching the ground directly or intercepted by the canopy,
which is further divided between fractions that evaporate, drip to the ground, or stay
in the canopy (in the case of snow). These processes are fully described in Chapter 10.

8.2 Atmospheric pressure

The atmospheric pressure [Iribarne and Godson, 1981, Berberan-Santos et al., 1997] is
calculated as:

Patm = PSTD · Pratio , (8.7)

Pratio = (1− LRSTD · hsite

TSTD

)

GSTD

LRSTD· R
MA , (8.8)

where PSTD = 101325 Pa is the standard pressure at sea level, GSTD =
9.80665 m s−2 is Earth’s gravity at sea level, TSTD = 288.15 K is the standard temper-
ature at sea level, LRSTD = 0.0065 K m−1 standard temperature lapse rate, hsite is the
height of a site over sea level, MA = 0.0289644 kg mol−1 is the molecular mass of air,
and R = 8.3143 m3 Pa mol−1 K−1 is the ideal gas constant.

8.3 Potential evapotranspiration

The calculation of potential evapotranspiration requires knowledge of the daily average
incident shortwave radiation from Eq. (9.31) (rad[i], W m−2). This is used to estimate
the net absorbed radiation (radnet, W m−2) as a fraction of rad, This fraction is based
on an assumption of an albedo of 0.2 and a ground heat flux of 10% of the absorbed
radiation during daylight, which makes (1− 0.2) · (1− 0.1) = 0.72.

radnet[i] = rad · 0.72 . (8.9)

CHAPTER 8. ATMOSPHERE 48

On the other hand, independent of radiation, we calculate the latent heat of vapor-
ization (L∗vap, J kg−1) as a function of the daylight average air temperature Tday[i] (in
◦C).

λvap,Tday[i] = λvap,0 − αλvap · Tday , (8.10)

where λvap,0 = 2.5023 · 106 J kg−1 is the latent heat of vaporization at 0 ◦C and
αλvap = 2430.54 J kg−1 K−1 is the slope of the linear approximation for the dependence
of the latent heat of vaporization on temperature.

We also calculate the psychometric parameter, dependent on atmospheric pressure
Patm:

γ[i] =
CP · Patm

λvap,Tday · εwa
, (8.11)

where εwa = 0.62196351 is the ratio between the molecular weights of water (MW =
18.0148 g mol−1) and dry air (MA = 28.9644 g mol−1), and CP = 1010.0 J kg−1 K−1 is
the specific heat of air.

Now we estimate the slope of the saturation vapour pressure curve at Tday, using a
temperature offset of 0.2 K for slope estimate, T1 = Tday + 0.2 K and T2 = Tday − 0.2
K. We calculate the saturation vapour pressures (PVS) at T1 and T2, PVS1 and PVS2,
using formula from Abbott and Tabony [1985]:

PVS1 = 610.7 exp(
17.38 · T1

239 + T1

) , (8.12)

PVS2 = 610.7 exp(
17.38 · T2

239 + T2

) , (8.13)

and we use them to calculate the slope s of the PVS vs. temperature curve near
Tday:

s =
PVS1 − PVS2

T1 − T2

. (8.14)

Finally we calculate PET (kg m−2 day−1, equivalent to mmwater day−1) using the
Priestly-Taylor approximation, with coefficient set at 1.26:

PET[i] =
1.26 · s

s+γ
· radnet · dayL

Lvap

, (8.15)

where dayL is the daytime length from Eq. (9.4).

8.4 Humidity

Atmospheric humidity is calculated from daylight temperature Tday and dew temper-
ature Tdew. Tdew (see Chapter 9) is estimated first as Tmin and can be corrected iter-
atively for an arid environment: Tdew determines atmospheric vapour pressure, which

CHAPTER 8. ATMOSPHERE 49

determines radiation, which determines potential evapotranspiration, which can be used
to correct Tdew. Regardless of which estimate of Tdew we keep in the end (the first es-
timate Tdew = Tmin or the correction), the final Tdew is used to calculate atmospheric
vapour pressure (pva, Pa):

pva[i] = 610.7 exp(17.38 · Tdew

239 + Tdew

) , (8.16)

Vapour pressure at saturation (pvs, Pa) is calculated from a similar formula, but
using Tday instead of Tdew:

pvs[i] = 610.7 · exp(17.38 · Tday

239 + Tday

) . (8.17)

Relative humidity (RH, unitless) and vapour pressure deficit (vpd, Pa) are simply
calculated as:

RH[i] =
pva

pvs
, (8.18)

vpd[i] = pvs− pva , (8.19)

8.5 Canopy layer conductance

We calculate the wind’s friction velocity (u∗, m s−1) using Monin-Obukhov similarity
theory under neutral stability conditions:

u∗[i] = κ
u

log(zref−d0

z0
)
, (8.20)

where κ = 0.4 is the Von Karman constant, zref = 17.5 m is the reference height for
the wind, d0 = 12.5 m is the zero plane displacement, and z0 = 0.3 m is the surface
roughness.

The boundary layer conductance (gb, m s−1) [Monteith, 1965] is:

gb[i] =
1

6.2
u∗0.67

, (8.21)

with the boundary layer conductance for water vapour is:

gbw[i] = gb · 1000./MW , (8.22)

where MW = 18.0148 is the molecular weight of water (g mol−1). Similarly, the
boundary layer conductance for CO2 is:

gbc[i] =
gbw
1.37

, (8.23)

CHAPTER 8. ATMOSPHERE 50

The canopy aerodynamic conductance (ga, m s−1), from Monteith [1965]:

ga[i] =
u2
∗
u

, (8.24)

while the canopy aerodynamic conductance for water (ga,w, mol m−2 s−1) is:

ga,w[i] = ga,w
1000Kg m−3

MW

. (8.25)

It has to be noted that, while these quantities are in theory different in each day i
as they ultimately depend on wind speed u[i], wind speed data are in most cases not
available daily. Therefore, in practice, these quantities are constant through time in
most cases.

Chapter 9: Radiation

Before starting the iterative algorithm between humidity and radiation, all the variables
that do not depend on humidity are calculated so they only get done once.

9.1 Transmitance

The initial transmittance tr1 is corrected for elevation:

tr1 = tbase
Pratio , (9.1)

where trbase = 0.870 (unitless) is the maximum instantaneous transmittance at sea
level and with dry atmosphere. This transmittance is later corrected for the optimal
air mass above it, which requires first to calculate the celestial angles.

For every day of the year DOY (1 to 365, only calculated for one year), we aim to
calculate maximum daily total transmittance, potential radiation, and length of day.
To do this, we first calculate several quantities that depend on i.

First, the declination is:

DECL[DOY] = DECLmin cos((DOY + DAYSOFF)
2π

365
); , (9.2)

where DAYSOFF = 11.25 is julian day offset of the winter solstice and DECLmin =
−0.4092797 is the minimum declination in radians (-23.5 degrees).

The hour angle at sunset hss (radians) is calculated as:

hss[DOY] = arccos(− sin(lat)

cos(lat)

sin(DECL)

cos(DECL)
) , (9.3)

where lat (degrees North) is the latitude of the site.

This hss is used to calculate the daytime length or daylength (dayL, in seconds) as:

dayL[DOY] = 2hss · SECPERRAD , (9.4)

51

CHAPTER 9. RADIATION 52

where SECPERRAD = 13750.9871 is the number of seconds per radian of hour
angle.

The solar constant SC (W m−2) is:

SC[DOY] = 1368 + 45.5 sin((2π
DOY

365.25
) + 1.7) . (9.5)

To calculate the maximum daily total transmittance and the potential radiation, we
integrate over small periods of time adding to the whole day, using a sub-daily routine
to calculate quantities that depend on the hour angle. Before starting this routine, we
calculate several auxiliary quantities bsg1, bsg2 and bsg3 that depend on the day i but
not on the hour angle:

bsg1[DOY] = − sin(slp) sin(asp) cos(DECL) , (9.6)

bsg2[DOY] = (− cos(asp) sin(slp) sin(lat) + cos(slp) cos(lat) cos(DECL) , (9.7)

bsg3[DOY] = (cos(asp) sin(slp) cos(lat) + cos(slp) sin(lat)) sin(DECL) , (9.8)

where asp and spl are respectively the aspect (orientation of the slope) and the
inclination of the slope at the site, both of which are parameters of the site.

Sub-daily routine

After calculating these quantities for the day-of-year DOY, a sub-daily routine starts to
calculate several quantities at equally time-spaced intervals. This interval is dtr = 600
s (10 minutes), which is transformed into an hour angle interval dh = dtr

SECPERRAD
to

perform calculations as function of the solar hour angle h. This routine runs between
sunrise (h=-hss) and sunset (h=+hhs) at increments of dh.

The previous auxiliary quantities independent of the angle hour h (bsg1, bsg1 and
bsg1) are now used to calculate the beam-slope angle cbsa:

cbsa[h] = arccos(sin(h) ∗ bsg1 + cos(h) ∗ bsg2 + bsg3) . (9.9)

The total over the time-step dtr of the extraterrestrial radiation perpendicular to
beam, radper,top (J) is calculated as (note that is the same for every interval of length
dtr, but dependent on DOY):

radper,top[DOY] = dtr · SC[DOY] . (9.10)

The solar zenith angle depends on both the DOY and h:

Zen[DOY, h] = arccos(
sin(DECL)

cos(DECL)
cos(h) +

sin(lat)

cos(lat)
) . (9.11)

CHAPTER 9. RADIATION 53

If cos Zen > 0, we calculate the potential radiation for this time interval, for a flat
surface, at the top of atmosphere:

radflat,top[DOY, h] = radper,top · cos Zen . (9.12)

Now we calculate the optical air mass (am, unitless):

am[DOY, h] =
1

cos Zen + 10−7
, (9.13)

which is used to correct the instantaneous transmittance:

tr2[DOY, h] = tram
1 . (9.14)

Note that Zen, am, rad,flat,top and tr2 depend on h. To obtain the total daily
transmittance, we sum the instantaneous transmittance for each 10 minutes interval,
weighted by potential radiation for a flat surface at top of atmosphere:

trsum[DOY] =
∑
h

tr2 · radflat,top . (9.15)

End of the sub-daily routine

After the sub-daily routine, we calculate maximum daily total transmittance ttrmax and
daylight average flux density for a flat surface fluxdensflat and for the slope fluxdensslope.

ttrmax[DOY] =

∑
h tr2 · radflat,top∑

h radflat,top

, (9.16)

fluxdensflat[DOY] =

∑
h radflat,top∑
h dayL

, (9.17)

fluxdensslope[DOY] =

∑
h radper,top · cbsa∑

h dayL
. (9.18)

9.2 Sky proportion

The next step is to calculate the sky proportion for diffuse radiation. We use the product
of spherical cap defined by average horizon angle and the great-circle truncation of a
hemisphere. This factor is independent of i.

First, the average horizon Horavg is calculated as the average between the East and
West horizons, HorE and HorW, which are parameters of the site.

Horavg =
HorE + HorW

2
. (9.19)

CHAPTER 9. RADIATION 54

If the inclination of the slope at the site exceeds Horavg, the excess is calculated:

splexcess = spl− Horavg . (9.20)

The horizon scalar is then calculated as:

Horscalar = 1− sin(Horavg) , (9.21)

Now we calculate the slope scalar splscalar. If Horavg > π (rad), then splscalar = 0.
Otherwise, it is calculated as:

splscalar = 1− (
splexcess

π − 2Horavg

) ≥ 0 . (9.22)

Finally the sky proportion for diffuse radiation is:

skyprop = Horscalar · splscalar . (9.23)

9.3 Daily Radiation

A series of calculations is used to calculate the daily radiation and the fraction of it that
is photosynthetically active. In a nutshell (we will now explain it in detail), the daily
radiation is sum of the direct and diffuse radiations plus a snow correction. These are all
dependent on daily transmittance, which is affected by three factors: Daily difference
between maximum and minimum temperatures (known, as these are direct inputs to
the model), whether there has been some precipitation in that day (independent on the
quantity), and atmospheric vapour pressure (pva, Pa), which depends directly on dew
temperature Tdew (which is not known a priori).

Let us for now suppose we know Tdew. Then, we can calculate daily pva using Eq.
(8.16). Vapour pressure has an effect on the maximum daily total transmittance, which
is corrected to:

ttr′max[i] = ttrmax + Abase · pva , (9.24)

where Abase = −6.1 ·10−5 Pa−1 is the vapour pressure effect on transmittance. Note
that ttrmax depends on DOY while pva depends on i, and because DOY is a function
of i, we say that ttr′max depends only on i. This allows us to calculate the final daily
total transmittance:

ttrfin[i] = ttr′max · ttrfrac , (9.25)

where ttrfrac is the proportion of daily maximum transmittance, calculated as:

ttrfrac[i] = Rscalar(1− 0.9 exp(−b ·DTRC) · ttrfmax) , (9.26)

CHAPTER 9. RADIATION 55

b[i] = B0 −B1 exp(−B2 ·DTRsmooth) , (9.27)

Rscalar[i] =

{
1 if qprecip[i] = 0

0.75 if qprecip[i] > 0
. (9.28)

where DTR is the diurnal temperature range, DTR[i] = Tmax − Tmin, and
DTRsmooth[i] is DTR smoothed over a 30 day window. B0 = 0.013, B1 = 0.201,
B2 = 0.185 and C = 1.5 are dimensionless radiation parameters. The rain scalar
Rscalar is the transmitance correction for rainy days, 0.75 if there is rain in that day, 1
otherwise.

Now we estimate the fraction of radiation that is diffuse pdif , on an instantaneous
basis, from relationship with daily total transmittance in Jones [1993] Fig 2.8, p. 25,
and Gates [1980] Fig 6.14, p. 122.

pdif [i] = −1.25 · ttrfin + 1.25 , (9.29)

with pdif ∈ [0, 1]. The fraction of radiation that is direct is simply:

pdir[i] = 1− pdif . (9.30)

The daily total radiation is estimated as the sum of three components:

rad[i] = raddir[i] + raddif [i] + Scor[i] , (9.31)

where these components are:

1. raddir: The direct radiation arriving during the part of the day when there is
direct beam on the slope.

2. raddif : The diffuse radiation arriving over the entire dayL (when sun is above
ideal horizon).

3. Scor: The snow correction (Scor), when snow is present.

The direct radiation is calculated as the product of the average flux density for a slope,
the transmittance, and the fraction of direct radiation:

raddir[i] = fluxdensslope · ttrfin · pdir . (9.32)

The diffuse radiation includes the effect of surface albedo in raising the diffuse
radiation for obstructed horizons:

raddif [i] = fluxdensflat · ttrfin · pdif · (skyprop + DIFALB(1− skyprop)) , (9.33)

where DIFALB = 0.6 (dimensionless) is the diffuse albedo for horizon correction.

CHAPTER 9. RADIATION 56

The snow correction Scor (W m−2), with a maximum allowed value of 100 W m−2,
is:

Scor[i] = (1.32 + 0.096 ·∆zsnow104)
1

dayL
, (9.34)

where ∆zsnow cm is the thickness of the snow layer. However, it is important to note
that this is not the same snow layer thickness from section 11.1, which is calculated each
day using precipitation and temperature-driven phase transitions. Instead, it is a pre-
run estimate of the snow layer thickness based on daily precipitation and temperature:

∆zsnow[i] = qprecip,snow[i]− qmelt[i] , (9.35)

qmelt[i] =

{
rmelt · Tavg if Tavg ≥ 0◦C

0 if Tavg ≤ 0 ◦C
. (9.36)

where rmelt = 0.042 cm ◦C d−1 snowmelt rate, and of course ∆zsnow cannot go below 0.

The photosynthetically active radiation (PAR) is calculated as a fraction of the
radiation, following Ross [1975]:

PAR[i] = rad ·

(
0.60 + 0.42 ·

pdir

pdif

1 + pdir

pdif

)
. (9.37)

9.4 Dew temperature

Now, let us remember that we do not know Tdew, which we need to input in Eq. (8.16)
to obtain all subsequent equations until Eq. (9.37). The way we proceed is to make a
first estimate for Tdew, calculate Eq. (8.16) and Eqs. (9.24)-(9.37), use the resulting
radiation to correct Tdew, and calculate Eq. (8.16) and Eqs. (9.24)-(9.37) again.

The first estimate is to assume dew temperature to be the minimum temperature for
each day, Tdew[i] = Tmin[i], which allows us to obtain a first estimate of the daily average
shortwave incident radiation. Using this, we can make a first estimate of daily potential
evapotranspiration (PET, section 8.3). The daily PET and the daily precipitation are
added to calculate the average annual precipitation (qprecip,yr) and average annual PET

(PETyr) at the site, which are compared to decide whether to keep our first estimates
or make a correction. If PETyr/qprecip,yr < 2.5, no correction is applied and our initial
assumption Tdew = Tmin is considered valid.

However, if PETyr/qprecip,yr ≥ 2.5 the arid correction is applied. For it, we make a
second estimate of Tdew using the first estimate of PET:

Tdew[i] = Tmin · (−0.127+1.121 · (1.003−1.444r+12.312r2−32.766r3)+0.0006 DTR) ,
(9.38)

where r[i] = PET
qprecip

is the ratio between PET and precipitation, on a daily basis.

CHAPTER 9. RADIATION 57

Now we make a second estimate of radiation using the second estimate of Tdew,
repeating the calculations of Eqs. (8.16) to (9.37). This allows us to obtain a second
estimate of PET, which are then used to calculate a third estimate of Tdew using Eq.
(9.38) again.

Chapter 10: Throughfall

10.1 Precipitation

Precipitation in the model is partitioned into several fluxes before reaching the soil
surface. First, it is partitioned into rainfall and snowfall, as a function of atmospheric
temperature. Each of these is partitioned into the amount that reaches the soil di-
rectly, or direct precipitation, and the amount that is intercepted by the canopy. The
intercepted precipitation is further divided into evaporated canopy water, canopy water
that drips to the soil (adding to direct precipitation), or in the case of snow, snow that
remains in the tree for the next day. A diagram of these fluxes can be seen in Fig. 10.1.

10.1.1 Solid/Liquid precipitation

Daily precipitation qprecip[i] is divided into liquid (rainfall) qprecip,liq and solid (snowfall)
qprecip,snow precipitation for each day. Rainfall and snowfall are calculated as a portion
of the daily total precipitation:

qprecip,liq[i] = cliq · qprecip , (10.1)

qprecip,snow[i] = (1− cliq) · qprecip , (10.2)

where cliq ∈ [0, 1] is calculated using the linear transition method [McCabe and
Wolock, 2009]. This method uses the average daily temperature Tavg to interpolate cliq
between the temperatures Train = 4◦C above which all precipitation is rainfall, and
Tsnow = −2◦C below which all precipitation is snowfall:

cliq =

1 if Tavg ≥ Train
Tavg−Tsnow
Train−Tsnow if Train > Tavg > Tsnow

0 if Tavg ≤ Tsnow

. (10.3)

There are alternative methods to calculate the proportion between liquid from solid
precipitations based on surface-level observations [Harpold et al., 2017]. These include
the use of a static threshold, using the minimum and maximum daily temperatures

58

CHAPTER 10. THROUGHFALL 59

Figure 10.1: Main hydrological fluxes.

[Leavesley et al., 1996], or a sigmoidal curve [Dai, 2008]. However, the linear transi-
tion method was able to best reproduce this proportion on tested sites where rainfall,
snowfall and temperature data was available.

10.1.2 Snow blow

Testing of the snow module in coastal sites showed an sizable discrepancy between
snowfall and accumulated snow on the ground, where the size of the snow pack was
excessively small to match the cumulative snowfall, even when accounting for very high

CHAPTER 10. THROUGHFALL 60

sublimation. This pointed towards snow blow as an important factor in certain sites,
where snow blowing out of the site is not compensated by snow blowing in from the
neighbourhood.

The net blowing of snow cannot be estimated easily, because it requires daily wind
data to estimate the amount of blown snow and a model of the local topography to
estimate the relation between blow-in and blow-out. This is out of the scope of a local-
scaled model such as MAIDEN. Therefore, we instead introduce parameter for the
proportion of blown snow sblow, that has to be calibrated locally. Typically, non-coastal
sites in flat grounds (a symmetric topography) will have a sblow ≈ 0, as the blow-in and
blow-out of snow can be expected to compensate each other. This parameter modifies
Eq. (10.2) into:

qprecip,snow[i] = (1− cliq)(1− sblow) · qprecip . (10.4)

10.1.3 Direct precipitation

Direct precipitation, the portion of precipitation that reaches the ground without strik-
ing the canopy, is calculated as a function of the plant area index (PAI):

qpdirect,liq[i] = qprecip,liq · exp(−0.18 · clumping · PAI) , (10.5)

qpdirect,snow[i] = qprecip,snow · exp(−0.18 · clumping · PAI) , (10.6)

where vegetation clumping is an input parameter of the model and:

PAI[i] = SAI + LAI , (10.7)

where LAI[i] is the leaf area index (Eq. (15.13)) and SAI is the stem area index
(which can also be called WAI, wood area index) a model parameter with a value of
SAI = 0.17 for black spruce.

10.2 Canopy water

10.2.1 Canopy interception

The amount of rainfall and snowfall intercepted by the canopy is calculated by sub-
tracting direct precipitation from precipitation:

qinter,liq[i] = qprecip,liq − qpdirect,liq (10.8)

qinter,snow[i] = qprecip,snow − qpdirect,snow (10.9)

CHAPTER 10. THROUGHFALL 61

This is the added to the canopy water (snow) storage cws (css), up to a maximum
capacity. This capacity is proportional to the PAI:

cwsmax[i] = cwscoef · PAI , (10.10)

cssmax[i] = csscoef · PAI . (10.11)

The canopy water storage coefficient is cwscoef = 0.34 mm for black spruce. The
canopy snow storage coefficient was measured for Engelmann spruce as csscoef = 5.9
mm [Pomeroy et al., 1998], which we assume to be the same for black spruce. The
reservoirs of canopy water and canopy snow are currently independent, a simplification
that can hold because of the reduced amount of situations where there would be a
conflict between the two.

The storage of canopy water is always 0 before adding the intercepted rainfall,
because the remaining water at the end of the day is supposed to drip overnight.
However, the snow stays from the previous day. The amounts of canopy water/snow
after interception are:

PrecipOnLeaves[i] = min(qinter,liq, cwsmax) , (10.12)

SnowOnLeaves[i] = min(css[i] + qinter,snow, cssmax) , (10.13)

where css[i] is the canopy snow storage at the beginning of day i. The excess
rain/snow are added to the direct rainfall/snowfall:

q′pdirect,liq[i] = qpdirect,liq + max(qinter,liq − PrecipOnLeaves, 0) , (10.14)

q′pdirect,snow[i] = qpdirect,snow + max(css[i] + qinter,snow − SnowOnLeaves, 0) , (10.15)

10.2.2 Canopy evaporation

Potential evaporation is calculated using the Penman-Monteith equation. For liquid
water, the equation was originally implemented as:

λEpot,liq[i] =
∆ ·R + ρair · Cair · δatm/rhr

∆ + γ(1 + rs/rhr)
, (10.16)

where ∆ (Pa/K) is the change rate of the specific humidities of air to temperature,
R (W/m2) is the incoming radiation, ρair ≈ 1.292 kg/m3 is the density of air, Cair =
1010 J kg−1K−1 is the specific heat of air, δatm (Pa) is the vapour pressure deficit,
rs = 0 s/m is the stomatal resistance, rhr = rhrr

rh+rr
(s/m) is the combined resistance (in

parallel) of convective and radiative heat transfer, and γ (Pa/kg) is the psychometric
parameter:

γ[i] =
CP · Patm

λvap,Tday · εwa
, (10.17)

CHAPTER 10. THROUGHFALL 62

where λvap,Tday = 2.5 · 106 − 2430.54 · Tday J/kg is the latent heat of vaporization,
εwa = 0.62196351 is the unitless ratio of molecular weight of water vapour to dry air,
Patm is the atmospheric pressure, and CP = 1010.0 J kg−1 K−1 is the specific heat of
air.

Eq. (10.16) gives the potential evaporation in units of W/m2. This energy flux rate
can be transformed into a volume flux rate in mm/day:

Epot,liq[i] = λEpot,liq ·
dayL

ρliq · λvap
. (10.18)

with dayL (s/day) being the length of the day (time between sunrise and sunset)
and ρliq is the density of liquid water. Then, actual evaporation is calculated as the
minimum between the potential evaporation and the canopy water storage.

Eliq[i] = min(Epot,liq, cwsliq) , (10.19)

which can be transformed again to W/m2:

λEliq[i] = Eliq ·
ρliq · λvap
dayL

. (10.20)

To represent the sublimation of snow, we use the same equation as Eq. (10.16) but
using the latent heat of sublimation λsub = λvap + Lf , where Lf = 3.337 · 105 J kg−1 is
the latent heat of fusion, and modifying the radiation-dependent term with the snow
albedo αs = 0.85 [Greuell and Konzelmann, 1994]:

λEpot,snow[i] =
(1− αs)∆ ·R + ρair · Cair · δatm/rhr

∆ + γ(1 + rs/rhr)
. (10.21)

Snow is sublimated from the remaining energy after all canopy water has been
evaporated. Before the actual sublimation of snow is calculated, the actual evaporation
of water λEliq is subtracted from λEpot,snow (in W/m2 units).

λE ′pot,snow[i] = ·(λEpot,snow − λEliq) , (10.22)

The potential sublimation is then transformed from W/m2 to mm/day by multiply-
ing it by dayL/(ρliq · λsub), where we use ρliq instead of ρsnow because ice and snow are
measured in water-equivalent units (mm). Actual sublimation of snow is calculated as
the minimum between Epot,snow and cwssnow.

Esnow[i] = min(E ′pot,snow, cwssnow) , (10.23)

The water/snow amounts in the canopy after evaporation/sublimation but before
canopy drip are:

cws[i+
1

2
] = PrecipOnLeaves− Eliq , (10.24)

css[i+
1

2
] = PrecipOnLeaves− Esnow . (10.25)

CHAPTER 10. THROUGHFALL 63

10.2.3 Canopy drip

In the case of liquid water, the amount of water that remains in the canopy after
evaporation drips to the ground at the end of the day, adding to liquid throughfall:

qthru,liq[i] = q′direct,liq + cws[i+
1

2
] , (10.26)

cws[i+ 1] = 0 . (10.27)

In the case of canopy snow, a drip model taken from CLM5 [Lawrence et al., 2019]
is implemented to represent snow drip from above freezing temperatures:

qdrip,snow[i] =
css[i+ 1

2
] · (Tavg − 270 K)

1.87 · 105 K · s
· 86400 s/day > 0 . (10.28)

This equation implies that if the average temperature Tavg > −1 C, the snow drip
is larger than the canopy snow, and therefore all snow falls during the night. CLM5
implements time steps of 20-30 minutes, therefore it is likely that this result is was not
intended. Also, the snow drip has another term for wind unloading, which has not been
currently implemented because of lack of wind data:

qunl,wind[i] =
u · css[i+ 1

2
]

1.56 · 105 m
, (10.29)

where u (m/s) is the wind speed.

The amount of snow reaching the ground, or snow throughfall, is:

qthru,snow[i] = q′direct,snow + qdrip,snow , (10.30)

css[i+ 1] = css[i+
1

2
]− qdrip,snow . (10.31)

Chapter 11: Surface hydrology

Soil and snow calculations in MAIDENiso are made within a sub-daily time interval, in
order to improve the accuracy of the calculations. This time interval ∆t is henceforth
referred to as “hourly” and quantities that are calculated hourly have their time depen-
dence indicated with the letter h, as opposition to the daily quantities labelled by i. It
is to be noted that ∆t does not need to be an exact hour even though is called “hourly”
(we call it so to keep notation simple), and can be changed to other sub-daily time
intervals if a user so desires. For simplicity reasons too, the “hourly” time interval has
been chosen to be one exact hour, ∆t = 3600 s. Note that the hydrological calculations
are integrated with the thermal calculations. Thus, at the beginning of each day i, both
the hydrological and thermal calculations for h = 1 will be calculated before moving to
h = 2.

The daily fluxes are simply calculated by adding the hourly fluxes for that day. The
model does not store the hourly values from past days, only these daily fluxes which
are the values written in the outputs of the model.

11.1 Snow

11.1.1 Snow pack dynamics

The snow pack is implemented as a dynamic layer on top of the usual soil layers. This
layer is special as it can either cover the soil completely, be non-existing, or cover the
soil partially. In the latter case, the fluxes between the ground and the surface or the
atmosphere are proportionally distributed between the snow layer and the uppermost
soil layer.

The snow layer has a thickness ∆zsnow[h] (m), an ice content ωice,0[h] (kg), and a
water mass content ωliq,0[h] (kg). Note that we use the suffix 0 for the snow layer as we
later use the suffix j = 1..nslay for the soil layers below. Because the thickness of the
snow layer changes dynamically, it is easier to track absolute masses of ice and water
than to keep track of volumetric contents as it is done for the soil layers.

The calculation of thermal conduction (Chapter 12) can produce numerical diver-

64

CHAPTER 11. SURFACE HYDROLOGY 65

gence if the time-step ∆t is too large compared to layer thickness ∆z. For the time-step
∆t = 3600 used in the temperature calculations, numerical divergences can happen if
the snow layer has a thickness ∆z < 0.05 m. To ensure numerical convergence, the
snow layer has a minimum thickness ∆zsnow,min = 0.1 m. If the thickness of the snow
layer is reduced below this value, we simulate a situation where the snow only covers
the ground partially, in patches of thickness ∆zsnow,min. The fraction of snow cover is
calculated as:

fsnow[h] =
∆zsnow

∆zsnow,min
≤ 1 . (11.1)

In this situation, we still keep track of ∆zsnow as the depth the snow pack would
have if spread evenly, which is used to calculate snow density. Thermal calculations
instead use ∆zsnow,min for the snow-covered portion fsnow of the ground, while ignoring
snow cover in the snow-free portion. fsnow is also used to partition the calculations
performed at the surface for incoming liquid throughfall and evaporation.

The snow layer grows from incoming solid precipitation at the surface, qthru,snow[i]
(defined as a flux, mm/s, not the daily precipitation). The mass of snow in the top
snow layer grows by ∆ωice,0[h] = qthru,snow[i]∆t. The thickness of the snow layer grows
accordingly, given the density of newly fallen snow ρnsnow (kg/m3). This is dependent on
a temperature-driven term ρT and a wind-driven compaction term ρu. The temperature-
driven term ρT is:

ρnsnow[h] = ρT + ρu , (11.2)

ρT [h] =

50 + 1.7 · (17)1.5 if Tatm > TF + 2

50 + 1.7 · (Tatm − TF + 15)1.5 if TF − 15 ≤ Tatm < TF + 2

50 if Tatm ≤ TF − 15

, (11.3)

where Tatm is the atmospheric temperature from Eq. (12.39), which is calculated
hourly.

The wind-driven compaction term [van Kampenhout et al., 2017] is:

ρu[i] = 266.816

(
1 + tanh(u/5)

2

)8.8

. (11.4)

We typically do not have daily wind data available for MAIDEN. Therefore, the
wind-driven compaction is applied using the average wind speed u at the site. Given
this density, the thickness of the snow layer increases by ∆ωice,0/ρnsnow.

11.1.2 Snow water

Each time-step h, the water content ωliq,0 of the snow layer is first updated with the
inflow qliq,in and the outflow qliq,out.

ωliq,0[h+
1

2
] = ωliq,0[h] + (qliq,in − qliq,out)∆t . (11.5)

CHAPTER 11. SURFACE HYDROLOGY 66

In a second step, after the thermal state of the snow and soil layers is calculated,
the water content is updated for freezing/thawing (calculated in section 12.3):

ωliq,0[h+ 1] = ωliq,0[h+
1

2
] + ∆ωliq,0 . (11.6)

The outflow qliq,out comes from the percolation of liquid water through the snow,
and it is limited by the infiltration capacity of the soil qinfl,max from Eq. (11.15).

qliq,out[h] =
ρliq[θliq − Sr(1− θice)]∆zsnow

∆t
6 qinfl,max , (11.7)

where Sr = 0.033 is the irreductible water saturation and ρliq = 1000 kg m−3 is the
density of liquid water (and the density of ice is ρice = 917 kg m−3). The volumetric
contents of ice θice and water θliq are:

θice[h] =
ωice,0

∆zsnowρice
, (11.8)

θliq[h] =
ωliq,0

∆zsnowρliq
. (11.9)

The inflow of liquid water qliq,in into the snow layer is calculated as incoming liquid
precipitation minus the flux of snow water evaporation, and can therefore be negative.

qliq,in[h] = fsnow(qthru,liq − qevap,snow) . (11.10)

The evaporative flux of snow water qevap,snow (mm s) is calculated from the potential
evaporative flux λEpot,snow[i] (W/m2) in Eq. (11.69). The evaporated water from the
snow layer in a time-step h, qevap,snow[h]∆t, cannot exceed the quantity of water in the
snow layer in that interval, ωliq,0[h]. Therefore:

qevap,snow[h] = min

(
ωliq,0
∆t

,
λEpot,snow
λvap

)
. (11.11)

If water evaporation from snow qevap,snow is not enough to meet the atmospheric

demand λEpot,snow
λvap

, the unused energy is then used to sublimate snow. The sublimation

flux of snow qsub,snow is:

qsub,snow[h] =
λvap
λsub

(
λEpot,snow
λvap

− qevap,snow
)

, (11.12)

where λvap is the latent heat of vaporization and λsub = λvap +Lf is the latent heat
of sublimation, Lf being the latent heat of fusion (Table 12.1).

CHAPTER 11. SURFACE HYDROLOGY 67

At any given time, the snow layer has a maximum capacity to store water, deter-
mined by the thickness and density of the snow:

ωliq,0,max = ∆zsnowρliq − ωice,0
ρliq
ρice

. (11.13)

If the liquid water in the snow layer ωliq,0, after snow water movement has been cal-
culated, exceeds ωliq,0,max, the excess of water will be added to the runoff qover calculated
in Eq. (11.17).

11.2 Infiltration and runoff

Infiltration into the soil uses a simple model, where all the liquid water reaching the
soil surface, qin,surface, is able to infiltrate up to a maximum capacity:

qinfl[h] = min(qin,surface, qinfl,max) , (11.14)

This maximum infiltration capacity qinfl,max is determined as:

qinfl,max[h] = Θice,1κsat,1 , (11.15)

where Θice,1 and κsat,1 are respectively the ice impedance (Eq. (11.22)) and the
saturated hydraulic conductivity (Eq. (11.20)) of the upper soil layer.

On the other hand, the water that reaches the soil surface is:

qin,surface[h] = (1− fsnow)qthru,liq + qliq,Nsnowlay , (11.16)

where qliq,Nsnowlay is the outflux of water from the bottom snow layer. If there is
enough snow to consistently cover the ground, fsnow = 1 and therefore the only water
reaching the soil surface comes from the snow layer. Otherwise, throughfall reaching
the ground is proportional to the surface free of snow. The fraction that hits the snow,
fsnowqthru,liq, is added to the snow layer instead. Note that snow throughfall qthru,snow
is added entirely to the snow regardless of the value of fsnow.

Runoff qover is then simply calculated as:

qover[h] = qin,surface − qinfl . (11.17)

11.3 Soil water

11.3.1 Hydrological properties

Soil layers are denoted by j = 1..nslay, where the number of soil layers is nslay = 4
(though the model can be configured to have nslay = 5 layers). The soil can contain

CHAPTER 11. SURFACE HYDROLOGY 68

ice in addition to liquid water. For a layer j we denote by θliq,j its volumetric content
of liquid water and by θice,j its volumetric content of ice. For hydrological calculations,
it is preferable to work in terms of volumetric content, but for thermal calculations (see
Chapter 12) it is preferable to work in terms of masses of liquid water ωliq,j[h] and ice
ωice,j[h]. At any time-step, the conversion between the volumetric content and mass is
straightforward given the thickness of the layer ∆zj and the liquid/ice densities:

θliq,j =
ωliq,j
ρliq∆zj

, (11.18)

θice,j =
ωliq,j
ρice∆zj

. (11.19)

Note that ωliq,j and ωice,j are masses in kg, but we can also work interchangeably
with them in equivalent units of “mm of liquid water” (height that such mass per unit
of area would reach, with 1 kg/mm for water), which is usual in hydrology. For ice,
this is understood as the height that it would reach if melted.

Ice competes with liquid water for available porous space, which decreases the hy-
draulic conductivity κj (calculated hourly) of a soil layer:

κj[h] = Θice,jκsat,j

(
θliq,j
θsat,j

)2Bj+3

, (11.20)

where θliq,j[h] is the volumetric (liquid) water content of the layer, θsat,j is the
volumetric content at saturation, Bj is the “Clapp and Hornberger B exponent” (which
accounts for organic matter), and Θice,j is the impedance factor due to ice occupying
porous space:

Bj = (1− fom,j) · (2.91 + 0.159 · (%clay)j) + fom,j · 2.7 , (11.21)

Θice,j[h] = 10
−6·

θice,j
θsat,j , (11.22)

where θice,j is the volumetric ice content of the layer j. When θice,j = 0, then
Θice,j = 1, and Eq. (11.20) reads as it did in the versions previous to the incorporation
of ice and snow with MAIDENiso v4.

The saturated hydraulic conductivity κsat (mm/s) is defined as:

κsat,j =

(
1− fom,j
κsat,min,j

+
fom,j
κsat,om

)−1

, (11.23)

where κsat,om = 0.1 mm/s is the hydraulic conductivity for organic matter, fom,j
is the fraction of organic matter composition for layer j, and κsat,min,j (mm/s) is the
hydraulic conductivity for mineral soil:

κsat,min,j = 0.0070556 · 10−0.884+0.0153(%sand)j . (11.24)

CHAPTER 11. SURFACE HYDROLOGY 69

11.3.1.1 Darcy’s law

The flow of water q is calculated through Darcy’s law:

q = −κ∂(ψ + z)

∂z
, (11.25)

where ψ is the soil matric potential. In MAIDENiso, the flow of water qj between
layers j and j + 1 is implemented numerically as:

qj[h] = −2(ψj − ψj+1) + (∆zj + ∆zj+1)
∆zj
κj

+
∆zj+1

κj+1

. (11.26)

Soil matric potential is calculated as:

ψj[h] = ψsat,j

(
θliq,j
θsat,j

)−Bj
< 0 , (11.27)

where Bj = 2.91 + 0.159(%clay) and ψsat,j = −10 · 101.88−0.0131(%sand)j . In MAID-
ENiso, low values of θliq,j (typical for freezing temperatures) produce very large absolute
values of ψj. This produces numerical problems in the calculations of hydrology, which
can lead to numerical overflow. In imitation of the approach taken by Lawrence et al.
[2019], ψj has been capped at a minimum value of ψj > −108. This ensures the con-
vergence of the equations.

11.3.1.2 Field capacity

Field capacity can be derived assuming a hydraulic conductivity of 0.1 mm/d, then
inverting Eq. (11.20):

θfc,j = θsat,j

(
0.1 mm/d

86400 s/dκsat,j

) 1
2Bj+3

(11.28)

11.3.1.3 Soil water stress

Photosynthesis is directly influenced by soil water, through a soil water stress function
θg[i], calculated on a daily basis.

Previous to MAIDENiso v4, the soil water stress was a function of the total water
content of the ground. Two parameters soilb and soilip controlled the slope and inflection
point of this function:

θg[i] =
1

1 + exp(soilb · (SWC[i]− soilip))
. (11.29)

CHAPTER 11. SURFACE HYDROLOGY 70

This function presents some weaknesses. First, it is not mechanistic and its form
is arbitrary. Second, it requires the calibration of 2 parameters. Third, it takes into
account the water content of the whole soil, regardless of soil composition and even of
the presence of roots. This constrains the soil module to the layers accessible to the tree,
or the tree would take unavailable water into consideration. This is very restrictive for
the hydrology of the model, which could otherwise benefit from additional lower layers.

In MAIDENiso v4, the soil water stress θg[h] is defined without the need of param-
eters, being ultimately controlled by the humidity of the soil layers and physiological
constants of the tree (the osmotic potential of the fully open/closed stomata):

θg[h] =
∑
j

wiltrj , (11.30)

where rj is the root fraction in the layer j (each rj being a parameter of the model)
and wiltj is the wilting factor of the layer j:

wiltj[h] =

{
ψc−ψj
ψc−ψo

(
θsat,j−θice,j

θsat,j

)
≤ 1 if Tj > TF − 2 & θliq,j > 0

0 if Tj ≤ TF − 2 or θliq,j ≤ 0
, (11.31)

where ψc and ψo are the soil water potentials (mm) when the stomata are, re-
spectively, fully closed or fully opened, and Tj is the temperature of the layer j. For
needleleaf or for broadleaf evergreen trees, ψc = 255000 mm and ψo = 65000 mm, while
for broadleaf deciduous trees ψc = 224000 mm and ψo = 35000 mm.

θg[h] is calculated hourly, however it is applied in the photosynthesis module (section
16.2) with the daily time-step. The daily θg[i] is calculated as an average of all the hourly
θg[h] within the same day.

In addition, a yearly hydraulic stress factor Hstress is calculated at the end of the
year. This is done by averaging the daily θg[i] values during the growth season, which is
used by the tree to adjust the targeted size of the canopy for the next year (see section
15.3):

Hstress =

∑
di · θg,i∑
di

, (11.32)

where di = 1 during Summer and Autumn and di = 0 during Spring and Winter.

11.3.2 Numerical solution

The conservation of water for each layer gives the following equation:

∆zj
∂θliq,j
∂t

= −qj−1 + qj − ej , (11.33)

CHAPTER 11. SURFACE HYDROLOGY 71

where ∆zj (mm) is the thickness of layer j, qj is the flux of water from layer j to
layer j + 1, and ej is the sink of soil moisture via evapotranspiration, defined positive
for flow out of the layer (mm/s). In the soil module the fluxes are evaluated at discrete
intervals of ∆t = 3600 s (using h as the integer for this subdaily time-step), giving us:

∆zj[h]
∆θliq,j

∆t
= −qj−1[h+ 1] + qj[h+ 1]− ej , (11.34)

where ∆θliq,j = θn+1
liq,j − θnliq,j is the change in volumetric soil liquid water of the layer

j in time ∆t.

Soil evaporation can happen only to the upper soil layer j = 1. It is calculated
as the potential evaporative flux Epot,soil[i] (kg m−2 s−1) from Eq. (11.66) (see section
11.4), limited by the available water in the layer:

qevap,soil[h] = min
(ωliq,1

∆t
, Epot,soil[i]

)
. (11.35)

The layer water removed by evapotranspiration is given by evaporation (qevap,soil,
only for upper soil layer j = 1) and transpiration (qtran, see section 16.4):

ej[h] =

{
(1− fsnow)qevap,soil + qtranre,j if j = 1

qtranre,j if j > 1
, (11.36)

where fsnow is the portion of the soil covered in snow (as evaporation only affects the
snow-free portion). re,j is the effective root fraction for layer j, which can be defined in
several ways. The original formulation is simply:

re,j = rj . (11.37)

Another possibility, is to use the wilting factor wiltj (subsection 11.3.1.3) to weight
the root fraction rj:

re,j[h] =
wiltj · rj∑
j wiltj · rj

. (11.38)

A third possibility is to avoid the root fraction entirely, which it has to be arbitrar-
ily defined by the user. This can be done under the assumption that the tree absorbs
water from each layer in proportion to the wilting in that layer and to its water con-
tent at saturation. This is equivalent to the previous model, assuming root fractions
proportional to the maximum capacity of the layers.

re,j[h] =
wiltj∆zjθsat,j∑
j wiltj∆zjθsat,j

. (11.39)

The soil water fluxes from Eq. (11.34) can be linearised with a Taylor series expan-
sion.

qj[h+ 1] = qj[h] +
∂qj
∂θliq,j

∆θliq,j +
∂qj

∂θliq,j+1

∆θliq,j+1 , (11.40)

CHAPTER 11. SURFACE HYDROLOGY 72

qj−1[h+ 1] = qj−1[h] +
∂qj−1

∂θliq,j−1

∆θliq,j−1 +
∂qj−1

∂θliq,j
∆θliq,j . (11.41)

When these equations are substituted in Eq. (11.34), we obtain a general tridiagonal
equation set:

Λr,j = Λa,j∆θj−1 + Λb,j∆θj + Λc,j∆θj+1 , (11.42)

where Λa,j, Λb,j and Λc,j are the subdiagonal, diagonal and superdiagonal elements
of the tridiagonal matrix, respectively, and Λr,j is a column vector of constants. Note
that we have used this notation instead of the simpler aj, bj, cj and rj to avoid confusion
with other quantities. These elements are:

Λa,j = − ∂qj−1

∂θliq,j−1

, (11.43)

Λb,j =
∂qj
∂θliq,j

− ∂qj−1

∂θliq,j
− ∆zj

∆t
, (11.44)

Λc,j =
∂qj

∂θliq,j+1

, (11.45)

Λr,j = qj−1[h]− qj[h] + ej . (11.46)

The fluxes and their partial derivatives are computed with a finite difference form,
as:

qj[h] =
−2 · (ψj − ψj+1)− (∆zj + ∆zj+1)

(
∆zj
κj

+
∆zj+1

κj+1
)

, (11.47)

∂qj
∂θliq,j

=
−2(

∆zj
κj

+
∆zj+1

κj+1
)
∂ψj
∂θliq,j

+ (−2 · (ψj − ψj+1)− (∆zj + ∆zj+1))
∆zj
κ2j

∂κj
∂θliq,j

(
∆zj
κj

+
∆zj+1

κj+1
)2

,

(11.48)

where:
∂ψj
∂θliq,j

= −Bj
ψj
θliq,j

, (11.49)

∂κj
∂θliq,j

= (2Bj + 3)
κj
θliq,j

. (11.50)

For the upper layer (j = 1), the coefficients of the tridiagonal set of equations are:

Λa,j = 0 , (11.51)

Λb,j =
∂qj
∂θliq,j

− ∆zj
∆t

, (11.52)

Λc,j =
∂qj

∂θliq,j+1

, (11.53)

CHAPTER 11. SURFACE HYDROLOGY 73

Λr,j = qinfl[h]− qj[h] + (1− fsnow)qevap,soil + qtranre,j . (11.54)

For the intermediate layers j = 2, 3 ... nslay − 1:

Λa,j = − ∂qj−1

∂θliq,j−1

, (11.55)

Λb,j =
∂qj
∂θliq,j

− ∂qj−1

∂θliq,j
− ∆zj

∆t
, (11.56)

Λc,j =
∂qj

∂θliq,j+1

, (11.57)

Λr,j = qj−1[h]− qj[h] + qtranre,j . (11.58)

And for the bottom layer j = nslay:

Λa,j = − ∂qj−1

∂θliq,j−1

, (11.59)

Λb,j =
∂qj
∂θliq,j

− ∂qj−1

∂θliq,j
− ∆zj

∆t
, (11.60)

Λc,j = 0 , (11.61)

Λr,j = qj−1[h] + κj + qtranre,j . (11.62)

Solving the tridiagonal equations yields ∆θj for each time-step. The moisture of
each layer is updated as:

θliq,j[h+
1

2
] = θliq,j[h] + ∆θj , (11.63)

where the final moisture of each layer is obtained after adding the change in water
content after melting/freezing (which is obtained in terms of mass ∆ωliq,j, see section
12.3):

θliq,j[h+ 1] = θliq,j[h+
1

2
] +

∆ωliq,j
ρliq∆zj

. (11.64)

And the soil drainage is:

qdrai[h] = (κnslay +
∂κnslay
∂θliq,nslay

∆θnslay)∆t (11.65)

CHAPTER 11. SURFACE HYDROLOGY 74

11.4 Soil evaporation

Soil evaporation uses a different implementation for the Penman-Monteith equa-
tion than the canopy water, calculating potential evaporation from the soil Epot,soil
(kg m−2 s−1) as:

Epot,soil[i] =
ρairMRsat(RHsoil − RHatm)

rsoil
, (11.66)

where MRsat is the mixing ratio at saturation and RHsoil and RHatm are the relative
humidities of the soil and the atmosphere. The relative humidity of the soil is calculated
as:

RHsoil[i] = exp(G
ψ1

RTavg

) , (11.67)

where G is the gravitational constant, R is the gas constant, ψ1 is the soil water
potential of the upper soil layer and Tavg is the atmospheric temperature averaged over
the last 30 days (likely because there is no calculation of soil temperature).

The implementation in Eq. (11.66) uses the soil resistance to water vapour move-

ment, calculated as rsoil = 3.8113 · 106 exp(−13.515
θliq,1
θsat,1

). 1

If the formula in Eq. (11.66) is translated to the formulation used in Eqs. (10.16)
and (10.21) for better comparison, it would read as:

λEpot,soil[i] =
ρair · Cair · (esatRHsoil − eatm)/rsoil

0.622γ
. (11.68)

Therefore this formula does not account for the variation of saturation vapour pres-
sure esat with temperature (∆ = 0), and a factor 0.622 that was not present in Eq.
(10.16) appears in the denominator. This formula might be revised in future versions
of MAIDENiso.

Note on previous versions

Versions previous to MAIDENiso v4 performed a unit transformation for soil water
potential from mm to m by dividing this quantity by 100 instead of 1000, thus overes-
timating the soil water potential tenfold.

1These quantities were not justified in the original code by L. Misson, who only pointed out that
this formula came from Baldocchi. Digging into it, Baldocchi and Meyers [1998] got the formula
from Mahfouf and Noilhan [1991], who compared several formulations of evaporation. This specific
formula was taken from Passerat de Silans [1986], a thesis that only exists in paper in the university
of Grenoble.

CHAPTER 11. SURFACE HYDROLOGY 75

11.5 Snow evaporation/sublimation

Evaporation from snow is calculated in parallel to soil evaporation, and each is applied
proportionally to the fraction of the soil covered by snow. The formula for snow evapo-
ration [Stigter et al., 2018] is similar to that Eq. (10.21), but it can be applied either to
sublimate snow or to evaporate liquid water in the snow layer, adopting the appropriate
latent heat λ for either sublimation or evaporation:

λEpot,snow[i] =
(1− αs)∆ R + ρair CP δatm/ra

∆ + γ
. (11.69)

Note that λEpot,snow has units W m−2. Here, ra (s/m) is the aerodynamic resistance
to water vapour transfer. There are a multitude of alternative formulas to calculate
ra, some extremely complicated and dependent on many parameters [Lawrence et al.,
2019], others have a simpler dependency on the wind speed u [Blanken and Black,
2004]. Others use a constant value for ra, like the value ra = 400 s/m given by Stigter
et al. [2018]. Because wind inputs are not always available, we use the constant value
approach for ra, however this value has to be calibrated for the model. Typical values
tend to reside in the order of 5 s/m to 20 s/m.

The radiative term in Eq. (11.69) is weighted with the albedo αs, as only the
absorbed portion of the radiation counts towards evaporation/sublimation of snow.
Our formulation for albedo is adapted from Greuell and Konzelmann [1994]:

αs[i] = αice + (ρs − ρice)
(αnsnow − αice)
(ρnsnow − ρice)

, (11.70)

where the subscripts ice and nsnow refer to ice and new snow, respectively, and
ρs is the density of the snow layer. We use the values ρnsnow = 316.861 kg m−1,
ρice = 917 kg m−1, αnsnow = 0.85 and αice = 0.58. This albedo is used as well for
the canopy snow in Eq. 10.21, but considering that the density of the canopy snow is
always that of newly deposited snow, ρs = ρnsnow, which means that for the canopy
snow α = αnsnow = 0.85.

Because liquid water can be present in the upper snow layer, λvapEpot,snow (W m−2) is
used first to evaporate this water, then the used amount is subtracted from λsubEpot,snow
and the difference is used to sublimate snow.

Snow evaporation/sublimation can be calculated with alternative formulas to the
Penman-Monteith equation. A popular alternative is the Monin-Obukhov similarity
theory, used for instance in CLM [Lawrence et al., 2019]:

E = −ρatm
qatm − qS

ra
, (11.71)

where qatm and qS are the specific humidities of the atmosphere and the surface (in
the case of snow, equivalent to a saturated surface). Note that in this formula there is
no radiative term, and therefore it tends to underestimate the sublimation of snow.

CHAPTER 11. SURFACE HYDROLOGY 76

11.6 Thawed root threshold

MAIDENiso v4 introduced a new condition used for the phenological transitions be-
tween late Winter and Spring (see chapter 14), that is that a sufficient portion of the
roots must be free of ice (therefore allowing for water absorption of transpiration) be-
fore allowing the growth phase to start. For this, at the end of each day the fraction of
thawed (ice-free) roots is calculated as:

thawedroot[i] =
∑
j

(
rj

θliq,j
θliq,j − θice,j

)
. (11.72)

With this, thawedroot varies within the interval [0,1]. Then the flag thawflag = 1 is
set, indicating that the roots are “sufficiently thawed”, if thawedroot > thawedrootthres,
where thawedrootthres = 0.2 is a model parameter.

Chapter 12: Soil and snow temper-
atures

The implementation of snow layers and ice content in the soil requires a precise thermal
model, which has been adapted from CLM5 [Lawrence et al., 2019]. To be able to model
the daily cycles of thawing and freezing at the beginning and at the end of winter,
temperature calculations are performed in an hourly basis, indicated with the time-
step integer h. Note that the thermal calculations are integrated with the hydrological
calculations. Thus, at the beginning of each day i, both the hydrological and thermal
calculations for h = 1 will be calculated before moving to h = 2.

Similar to surface hydrology, the model only records and writes in the outputs the
history of daily values. While the daily fluxes were calculated by adding the hourly
fluxes, temperatures are recorded as the final temperatures of the day (the last sub-
daily time-step).

12.1 Thermal properties of soil and snow

The thermal properties of the soil are a weighted combination of their mineral and
organic properties. We have no data available for the site for the fraction of soil organic
matter, so a provisional value of fom = 0.0 has been adopted.

12.1.1 Thermal conductivity

Soil thermal conductivity λj (W m−1 K−1) for layer j, with j = 1..nslay where nslay =
4 is the number of soil layers, is:

λj[h] =

{
Ke,jλsat,j + (1−Ke,j)λdry,j if Sr,j > 10−7

λdry,j if Sr,j ≤ 10−7
, (12.1)

77

CHAPTER 12. SOIL AND SNOW TEMPERATURES 78

Description Symbol Value Units
Thermal conductivity of solid organic matter λs,om 0.25 W m−1 K−1

Thermal conductivity of dry organic matter λdry,om 0.05 W m−1 K−1

Thermal conductivity of water λliq 0.57 W m−1 K−1

Thermal conductivity of ice λice 2.29 W m−1 K−1

Thermal conductivity of air λair 0.023 W m−1 K−1

Specific heat capacity of water Cliq 4188 J kg−1 K−1

Specific heat capacity of ice Cice 2117.27 J kg−1 K−1

Specific heat capacity of air Cair 1004.64 J kg−1 K−1

Volumetric heat capacity of organic matter cs,om 2.5 · 106 J m−3 K−1

Latent heat of vaporization at 0 ◦C λvap,0 2.5023 · 106 J kg−1

Latent heat of vaporization at T λvap,T λvap,0 − αλvapT J kg−1

Slope of λvap,T linear dependence on T αλvap 2430.54 J kg−1 K−1

Latent heat of fusion Lf 3.337 · 105 J kg−1

Latent heat of sublimation λsub λvap + Lf J kg−1

Table 12.1: Physical constants for thermal properties.

where Ke,j is the Kersten number for layer j:

Ke,j[h] =

{
log(Sr,j) + 1 if Tj ≥ TF

Sr,j if Tj < TF

. (12.2)

TF = 0 ◦C is the fusion temperature of water and Sr,j is the degree of saturation
of layer j, given by the volumetric contents of water (θliq,j) and ice (θice,j) of the layer,
relative to its saturation value θsat,j (evaluated at h+ 1

2
, after solving water conduction):

Sr,j[h] =
θliq,j[h+ 1

2
] + θice,j[h+ 1

2
]

θsat,j
. (12.3)

The dry thermal conductivity λdry,j is given by:

λdry,j = (1− fom,j)λdry,min,j + fom,jλdry,om , (12.4)

where λdry,om is the thermal conductivity of dry organic matter (Table 12.1) and
λdry,min,j is the thermal conductivity of dry mineral soils, dependent on the bulk density
ρd,j = 2700(1− θsat,j) (kg m−3) as:

λdry,min,j =
0.135ρd,j + 64.7

2700− 0.947ρd,j
. (12.5)

The saturated thermal conductivity λsat,j is:

λsat,j = λ
1−θsat,j
s,j λ

θliq,j
θliq,j+θice,j

θsat,j

liq λ

θice,j
θliq,j+θice,j

θsat,j

ice , (12.6)

CHAPTER 12. SOIL AND SNOW TEMPERATURES 79

where the λliq and λice are the thermal conductivities of water and ice (Table 12.1)
and λs,j is the thermal conductivity of soil solids:

λs,j = (1− fom,j)λs,min,j + fom,jλs,om , (12.7)

where λs,om is the thermal conductivity of solid organic matter (Table 12.1) and
λs,min,j is the mineral soil solid thermal conductivity, dependent on the sand-clay com-
position of the soil layer:

λs,min,j =
8.80(%sand)j + 2.92(%clay)j

(%sand)j + (%clay)j
. (12.8)

The thermal conductivity of the snow layer λsnow is given by:

λsnow[h] = λair+(7.75 ·10−5ρsnow[h+
1

2
]+1.105 ·10−6ρ2

snow[h+
1

2
])(λice−λair) , (12.9)

where λair is the thermal conductivity of air (Table 12.1) and ρsnow[h + 1
2
] is the

bulk density of snow (kg m−3) evaluated at h+ 1
2
:

ρsnow[h] =
ωice[h+ 1

2
] + ωliq[h+ 1

2
]

∆zsnow[h+ 1
2
]

, (12.10)

where ωice and ωliq are the solid and liquid water quantities (kg or mm of liquid
water) in the snow layer, evaluated at h+ 1

2
(see section 11.1).

12.1.2 Heat capacity

The volumetric heat capacity cj (J m−3 K−1) for the soil layers is given as:

cj[h] = cs,j(1− θsat,j) +
ωice,j
∆zj

Cice +
ωliq,j
∆zj

Cliq . (12.11)

Here, Cliq and Cice are the specific heat capacities of water and ice (Table 12.1), and
cs,j is the volumetric heat capacity of soil solids:

cs,j = (1− fom)cs,min,j + fomcs,om , (12.12)

where cs,om is the volumetric heat capacity of organic matter (Table 12.1), and
cs,min,j is the volumetric heat capacity of mineral soil solids:

cs,min,j = 10−6

(
2.218(%sand)j + 2.385(%clay)j

(%sand)j + (%clay)j

)
. (12.13)

CHAPTER 12. SOIL AND SNOW TEMPERATURES 80

12.2 Thermal conduction

The numerical solution of thermal conduction uses a similar model to that of section 11.3
for soil hydrology. The updated temperatures of all layers are obtained simultaneously
as the solution to a tridiagonal system of equations. These equations are obtained from
the heat flux between layers, which are calculated from the thermal properties of the
layer at time h (including the temperature Tj[h].

In contrast with the numerical solution for soil hydrology, where the soil layers
j = 1..nslay were the only ones solved in a tridiagonal system and the snow layer
was treated separately, the numerical solution for thermal conduction includes both
the snow layer and the soil layers. Therefore, we now use j = 0, 1..nslay with j = 0
referring to the snow layer, and it should be understood that quantities like λj, Tj and
cj with j = 0 are the same as λsnow, Tsnow and csnow.

The first law of heat conduction is:

F = −λ∇T . (12.14)

This law is applied to the combined set of snow and soil layers, giving us Fj, the
heat flow between layers j and j + 1, defined as positive upwards:

Fj = −λh,j
Tj − Tj+1

zj+1 − zi
, (12.15)

where j + 1 is the layer below the layer j, and λh,j is the thermal conductivity at
the interface (mid-point) between the layers, calculated as:

λh,j =
λjλj+1(zj+1 − zj)

λj(zj+1 − zh,j) + λj+1(zh,j − zj)
, (12.16)

where zh,j is the depth of the interface between layers. The energy balance for layer
j is:

cj∆zj
∆t

(Tj[h+ 1]− Tj[h]) = −Fj−1 + Fj , (12.17)

where h and h+1 are the beginning and end of the time-step (same as the beginning
of the next time-step), respectively. This equation is solved with the Crank-Nicholson
method, that combines the explicit method (where the fluxes are evaluated at h, using
Fj−1[h] and Fj[h]) and the implicit method (where the fluxes are evaluated at h + 1,
with Fj−1[h+ 1] and Fj[h+ 1]):

cj∆zj
∆t

(Tj[h+1]−Tj[h]) = α(−Fj−1[h]+Fj[h])+(1−α)(−Fj−1[h+1]+Fj[h+1]) , (12.18)

where α = 0.5. This results in a tridiagonal system of equations:

Λr,j = Λa,jTj−1[h+ 1] + Λb,jTj[h+ 1] + Λc,jTj+1[h+ 1] , (12.19)

CHAPTER 12. SOIL AND SNOW TEMPERATURES 81

where Λa,j, Λb,j and Λc,j are the subdiagonal, diagonal and superdiagonal elements
of the tridiagonal matrix, respectively, and Λr,j is a column vector of constants. Note
that we have used this notation instead of the simpler aj, bj, cj and rj to avoid confusion
with other quantities like the volumetric heat capacity.

The elements of the tridiagonal matrix and the column vector are determined for
each individual layer. For a generic soil layer (all except the top and bottom soil layers,
j = 2, 3 ... nslay − 1):

Λa,j = −(1− α)
∆t

cj∆zj

λh,j−1

zj − zj−1

, (12.20)

Λb,j = 1 + (1− α)
∆t

cj∆zj

(
λh,j−1

zj − zj−1

+
λh,j

zj+1 − zj

)
, (12.21)

Λc,j = −(1− α)
∆t

cj∆zj

λh,j
zj+1 − zj

, (12.22)

Λr,j = Ti[h] + α
∆t

cj∆zj
(Fj − Fj−1) . (12.23)

For the bottom soil layer, the superdiagonal element is Λc,j = 0 and the bottom heat
flux Fj is taken from the mean crustal heat flux in the region Fcrust (site parameter,
which is taken from a global map by Jaupart and Mareschal [2010]):

Λa,j = −(1− α)
∆t

cj∆zj

λh,j−1

zj − zj−1

, (12.24)

Λb,j = 1 + (1− α)
∆t

cj∆zj

λh,j−1

zj − zj−1

, (12.25)

Λc,j = 0 , (12.26)

Λr,j = Ti[h] + α
∆t

cj∆zj
(Fcrust − Fj−1) . (12.27)

The top soil layer j = 1, can be completely or partially covered by snow or be
completely uncovered, which turns it effectively into the upper layer. Thus, the elements
are dynamically adapted to the situation by using fsnow:

Λa,j = −fsnow(1− α)
∆t

cj∆zj

λh,j−1

zj − zj−1

, (12.28)

Λb,j = 1 +
∆t

cj∆zj

(
(1− α)

λh,j
zj+1 − zj

− ∂h

∂Tj

)
, (12.29)

Λc,j = −(1− α)
∆t

cj∆zj

λh,j
zj+1 − zj

, (12.30)

CHAPTER 12. SOIL AND SNOW TEMPERATURES 82

Λr,j = Tj[h] +
∆t

cj∆zj

(
(1− fsnow)(Fatm[h]− ∂Fatm

∂Tj
Tj[h]) + α(Fj − fsnowFj−1)

)
.

(12.31)

For the snow layer (j = 0), note that the corresponding elements are not influenced
by fsnow, as this layer is always completely covered by the atmosphere above (thus
Λa,j = 0) and while it does not necessarily fully cover the upper soil layer, all of the
bottom surface of the snow layer is in contact with the upper soil layer. Thus:

Λa,j = 0 , (12.32)

Λb,j = 1 +
∆t

cj∆zj

(
(1− α)

λh,j
zj+1 − zj

− ∂h

∂Tj

)
, (12.33)

Λc,j = −(1− α)
∆t

cj∆zj

λh,j
zj+1 − zj

, (12.34)

Λr,j = Tj[h] +
∆t

cj∆zj

(
Fatm[h]− ∂Fatm

∂Tj
Tj[h] + α(Fj − Fj−1)

)
. (12.35)

Here, Fatm (W m−2) is the heat flux from the atmosphere, defined positive down-
wards:

Fatm = S − L−H − λE , (12.36)

where S[i] is the incoming short-wave radiation (rad[i] from Eq. (9.31), see section
9.3), L is the outgoing long-wave radiation, H is the sensible heat flux, and −λE is the
latent heat flux. L is calculated as black body radiation with the Stefan-Boltzmann
law:

L[h] = εσ(T1)4 . (12.37)

Here, ε is the emissivity of the surface (εsoil = 0.96 for soil and εsnow = 0.97 for
snow), σ = 5.67 · 10−8 W m−2 K−4 is the Stefan-Boltzmann constant, and T1 is the
temperature of the upper layer (of snow or soil). L should include a negative term
accounting for the incoming longwave radiation diffused by the atmosphere, however
we lack data to calculate it.

The sensible heat flux is calculated as:

H[h] = −ρatmCatm
Tatm − T1

ra
, (12.38)

where ra (s/m) is the resistivity of the atmosphere to heat flux transfer, which we
assume to be the same as the resistivity of the atmosphere to water vapour transfer
(parameter of the model). The atmospheric temperature is calculated in an hourly
basis using the minimum and maximum temperatures Tmin and Tmax of the day:

Tatm[h] =
Tmin + Tmax

2
+ (Tmax − Tmin) · sin

(
π + 2π

tn
24

)
, (12.39)

CHAPTER 12. SOIL AND SNOW TEMPERATURES 83

with h being the current hour of the day. This trigonometric approach makes the
minimum temperature happen at 6am and the maximum temperature happen at 6pm,
but could be further refined to account for the length of the day within the year in
future versions of MAIDENiso.

The derivative of Fatm to surface temperature is:

∂Fatm
∂T1

= − ∂L
∂T1

− ∂H

∂T1

− ∂λE

∂T1

, (12.40)

∂L

∂T1

= 4εσ(T1)3 , (12.41)

∂H

∂T1

=
ρatmCatm

ra
. (12.42)

Our calculation of latent heat flux does not include a dependence on surface tem-
perature, therefore ∂λE

∂T1
= 0.

The solution to the tridiagonal equations allows us to obtain the updated temper-
atures of each layer, which we denote Tj[h + 1

2
] as these are still not (necessarily) the

final temperatures. The last step is to apply phase changes for the water in the layers
that might result from the changes in temperature.

12.3 Phase change

After the layer temperatures after thermal conduction Tj[h + 1
2
] have been calculated,

we can now assess the excess energy for melting/freezing of water:

Hj = −cj∆zj
∆t

(TF − Tj[h+
1

2
]) . (12.43)

The potential mass ∆ωpot,liq,j (kg) of melted ice (∆ωpot,liq > 0) or frozen water
(∆ωpot,liq < 0) is:

∆ωpot,liq,j =
Hj∆t

Lf
. (12.44)

Melting happens if ωice,j > 0 and Hj > 0, in which case the ice mass that is melted
∆ωice,j and the corresponding liquid water mass ∆ωliq,j that is added are:

∆ωice,j = −min(∆ωpot,liq,j, ωice,j) , (12.45)

∆ωliq,j = −∆ωice,j . (12.46)

While freezing requires ωliq,j > 0 and Hj < 0, in which case the liquid water mass
that is frozen ∆ωliq,j and the corresponding ice mass that is added ∆ωice,j are:

∆ωliq,j = −min(|∆ωpot,liq,j|, ωliq,j) , (12.47)

CHAPTER 12. SOIL AND SNOW TEMPERATURES 84

∆ωice,j = −∆ωliq,j . (12.48)

Regardless of whether there was melting (∆ωliq,j > 0) or freezing (∆ωliq,j < 0), the
same formula is used to obtain the amount of used energy:

Hused,j =
∆ωliq,jLf

∆t
, (12.49)

where Hused,j > 0 for melting and Hused,j < 0 for freezing. The temperature of the
layer is finally updated to:

Tj[h+ 1] = TF +Hused,j
∆t

cj∆zj
. (12.50)

Note that if Hused,j = Hj, i.e. we used all the energy we had available for phase
change (meaning that we were not limited by not having enough water to freeze or ice
to melt) then the Tj[h+ 1] obtained from the previous equation will inevitably be TF,
the freezing/melting temperature. In boreal environments, this typically results in the
snow/soil layers staying at TF for several days in spring, as melting happens, and at
fall, when freezing happens.

Additionally, when melting (not freezing) occurs for the snow layer, the thickness
of this layer decreases. Before melting is applied, the density of ice in the layer is
calculated as ρice,0 =

ωice,0[h]

∆zsnow
(ωice,0[h] being the ice before the melting), and the new

thickness is calculated so that this density of the snow layer remains constant (as we
suppose the part of the snow layer that melts does it without affecting the rest):

∆zsnow[h+ 1] = ∆zsnow[h] +
∆ωice,0
ρice,0

. (12.51)

Chapter 13: Isotopes

13.1 Carbon isotopes

13.1.1 Discrimination against C isotopes

The fractionation for δ13C at the leaves, δ13Cleaf , is calculated according to a discrimi-
nation model with photo-respiratory effect [Lavergne et al., 2020]:

δ13Cleaf [i] = as+ (b− as) · CCiCO2

CCaCO2

− fΓ∗

CCiCO2

, (13.1)

where as = 4.4 stands for isotopic fractionations associated with diffusion in air,
b = 28 is the isotopic fractionation due to carboxylation by Rubisco (28±2h)), f=12 is
the isotopic fractionation during photorespiration (12± 4h), Γ∗ (Pa, see Eq. (16.6)) is
the CO2 compensation point in the absence of dark respiration. CCiCO2[i] (ppmV) and
CCaCO2[i] (ppmV) are the concentrations of CO2 in the stomata and the atmosphere,
respectively. The latter is an input to MAIDENiso, that has to be given daily, while
the former is calculated as:

CCiCO2[i] = Ci,sun
106Pa ppmV−1

Patm

, (13.2)

13.1.2 Isotopic composition of carbon stored

If carbon was stored during the time-step i, i.e. ∆CStore[i] > 0, then the δ13C for the
early photosynthetates, δ13Cphoto is:

δ13Cphoto[i] =
δ13CCO2 − δ13Cleaf

1 + δ13Cleaf

1000

, (13.3)

where δ13CCO2 is the δ13C of the atmospheric CO2, which is an input to the model.
With this, the δ13C of the carbon in the store δ13Cstore is updated as:

δ13Cstore[i] =
δ13Cstore[i− 1]() + δ13CphotoCStemin[i− 1]

Cstore

. (13.4)

85

CHAPTER 13. ISOTOPES 86

If no carbon was stored during the time-step i, i.e. ∆CStore[i] = 0, then δ13Cstore

simply is carried over from the previous time-step:

δ13Cstore[i] = δ13Cstore[i− 1] . (13.5)

13.1.3 Isotopic composition of tree rings

In the general case, this is if CStoreout[i− 1] > 0 and NPP[i− 1] > 0, then we have two
sources of carbon to the tree-rings. In this case, δ13CTRC is calculated as the weighted
sum of the δ13C of these two sources, with the C quantities of each source being the
weights:

δ13CTRC[i] =
NPP[i− 1](δ13Cphoto + Dcp) + CStoreout[i− 1](δ13Cstore[i] + Dstdest + Dcp)

NPP[i− 1] + CStoreout[i− 1]
,

(13.6)

where Dstdest (h) is the 13C fractionation induced by destocking of storage car-
bon as starch and Dcp (h) is the difference between δ13C in cellulose and in early
photosynthetates.

If CStoreout[i − 1] = 0, then we simply add the post-photosynthetic fractionation
between leaf and tree-ring wood (cellulose or bulk wood):

δ13CTRC[i] = δ13Cphoto + Dcp . (13.7)

On the other hand, if NPP[i− 1] = 0, then the general expression is reduced to:

δ13CTRC[i] = δ13Cphoto + Dstdest + Dcp . (13.8)

The daily δ13C is then added for the whole year, weighted by the daily increments of
stem carbon, to obtain the δ13C of the tree ring produced during that year, δ13CTRC,yr

δ13CTRC,yr[y] =

∑
i δ

13CTRC[i]CStemin[i− 1]∑
i CStemin[i]

. (13.9)

13.2 Water isotopes

Water isotopes are tracked through the hydrological cycle, until they are absorbed
by the roots and incorporated to the wood structure. The introduction of snow in
MAIDENiso means introducing new parametrizations and processes.

CHAPTER 13. ISOTOPES 87

13.2.1 Isotopic composition of precipitation

Danis et al. [2012] developed a statistical model to estimate daily δ18O (h) in pre-
cipitation (δ18OP) based on daily values of mean air temperature Tair (Celsius) and
precipitation P (mm).

δ18OP = a Tair + b P + c , (13.10)

where a (h K−1), b (h mm) and c (h) are the coefficients of the regression model,
which are site parameters. To obtain these coefficients, the regression model in Eq.
(13.10) has to be applied first to daily data of δ18OP , Tair and P in the site were the
model is to be run, or (under reasonable assumption) in a nearby place.

After the addition of snow hydrology with MAIDENiso v4, the study of regression
curves at boreal sites showed that there was a clear differentiation between the regression
models in Eq. (13.10) when discriminating rainfall and snowfall events. The isotopic
composition of snowfall is distinct from that of rainfall because, unlike liquid rainfall,
the solid precipitation does not exchange isotopes with the atmosphere and conserves
the isotopic composition it had when formed in the cloud [Gat, 1996]. This motivated
the modification of the original formulation into two different regression models:

δ18Orain = arain Tair + brain P + crain , (13.11)

δ18Osnow = asnow Tair + bsnow P + csnow , (13.12)

The new model therefore requires 6 instead of 3 regression parameters, but the
method to obtain them is almost identical to that of the previous versions, using daily
data of δ18OP . Simply, the coefficients arain, brain and crain have to be obtained from
precipitation events of pure rainfall (identifiable as such by the air temperature) while
asnow, bsnow and csnow have to be obtained from precipitation events of pure snowfall.

Once the regression coefficients in Eqs. (13.11), (13.12) are obtained for the study
site, the model estimates the deuterium composition of precipitation, δ2HP , from δ18OP

using a meteoric water line:

δ2Hrain = 6.8959 δ18Orain + 0.6995 . (13.13)

δ2Hsnow = 6.8959 δ18Osnow + 0.6995 . (13.14)

However, these values are from a local meteoric water line somewhere in France,
and were never changed since the first version of the model as δ2H outputs were never
really used. Future versions of MAIDENiso can be expected to substitute these fixed
values by configurable parameters.

13.2.2 Isotopic mixing

In MAIDENiso, there are two processes that can change the isotopic composition of
water pools (e.g. the canopy ice, the liquid water in layer 1, the ice in layer 1...) in

CHAPTER 13. ISOTOPES 88

the model: mixing and fractionation. Mixing is calculated in parallel to hydrological
calculations. The way it works is simple. Let us denote by X a generic pool of water
(in mm), and denote by qX,in and qX,out the influx to and the outflux from the layer,
respectively (both in mm/s). Let us also call δ18OX to the isotopic composition of
oxygen-18 of the pool X (the same goes for deuterium as we do for oxygen-18), and call
δ18OqX,in and δ18OqX,out to the isotopic composition of the water carried in the fluxes
qX,in and qX,out. In this way, we have:

X[n+ 1] = X[n] + (qX,in[n]− qX,out[n])∆t , (13.15)

where n is an integer to indicate a generic time-step of ∆t (s), as this is done for
quantities that are calculated daily and hourly.

By definition, qX,out is a flux that originates from X, so independently to its desti-
nation, the associated oxygen-18 isotopic composition of this water flux is δ18OqX,out =
δ18OX .

Meanwhile, the qX,in can have a variety of sources, which can either be the outflux
qZ,out from another pool Z or being defined as influxes to the model qI (thought currently
this is the case solely for precipitation):

qX,in[n] =
∑
Z

qZ,out[n] +
∑
I

qI [n] , (13.16)

The isotopic composition of qZ,out is known as it is the isotopic composition of the
source, while the isotopic composition of qI , δ

18OqI , has to be given outside of the model
(as it is the case for precipitation, its isotopic composition has to be given either as
a model that allows to calculate δ18OP daily, or the values of δ18OP have to be given
directly as an input). For the sake of simplicity, let us rewrite the previous equation
with the different fluxes that make up the influx being called generically qZ :

qX,in[n] =
∑
Z

qZ [n] . (13.17)

Therefore, the isotopic composition after mixing (X[n+ 1]) will be obtained as the
weighted sum of the isotopic compositions δ18OX and δ18OqZ (∀ Z), with the masses of
water X − qX,out∆t and qZ∆t (∀ Z) being the weights:

δ18OX [n+ 1] =
δ18OX(X − qX,out∆t) +

∑
Z(δ18OqZqZ∆t)

X − qX,out∆t+
∑

Z(qZ∆t)
, (13.18)

with all quantities (pools, fluxes and isotopic compositions) at the right side of
this equation being evaluated at time-step n. While this expression looks complex, in
practice qI only exist for precipitation, and most water pools receive water directly from
a very low number of sources.

CHAPTER 13. ISOTOPES 89

The same logic applies in the situation when two or more fluxes qZ join together
into a flux qJ , rather than a pool. The equation reads the same as Eq. (13.18) when
making X − qX,out∆t = 0:

δ18OqJ =

∑
Z(δ18OqZqZ∆t)∑

Z(qZ∆t)
, (13.19)

Another possible situation is when a flux is divided without being deposited into
a water pool first, as it is the case for precipitation being separated into intercepted
precipitation and direct precipitation (see section 10.2). In this case, the branching
fluxes have the same isotopic composition as the original flux.

13.2.3 Fractionation processes

13.2.3.1 Evaporative fractionation

Evaporation of water in the soil and the canopy produces fractionation, as lighter
isotopes are evaporated preferentially, leading to higher concentrations of heavy isotopes
in the remaining water. In MAIDENiso, the evaporative fractionation is described
with the Craig-Gordon model [Craig and Gordon, 1965] implemented following the
formulation of Gibson et al. [2008], where the isotopic composition of the evaporative
flux δE is given as:

δE =
1

1− h+ εK

(
δL − ε+

α+
− hδA − εK

)
, (13.20)

where δL and δA are respectively the isotopic composition of the remaining water
and of the atmospheric vapour, h is the relative humidity of the atmosphere, εK =
nC0

Kθ(1−h), θ = (1−h′)/(1−h) being h′ the adjusted atmospheric humidity following
admixture of evaporating moisture, C0

K is 25h for deuterium and 28.6h for oxygen-18,
n = 1/2 for open water bodies and n = 1 for soil water and canopy, and ε+ = α+− 1 is
the equilibrium isotopic separation between liquid and vapour. α+, the liquid-vapour
equilibrium isotopic fractionation, was estimated from empirical relations by Horita and
Wesolowski [1994]:

103 lnα+
18O = −7.685 + 6.7123(103/T)− 1.6664(106/T 2) + 0.35041(109/T 3) (13.21)

103 lnα+
2H = 1158.8(T 3/109)−1620.1(T 2/106)+794.84(T/103)−161.04+2.9992(103/T)

(13.22)

Fractionation from evaporation in the canopy and the ground, however, was not
active in versions previous to MAIDENiso v4. Danis et al. [2012] mentions that direct
observations of oxygen-18 isotopic composition δ18OSW in their work site revealed no
that it was not significantly affected by soil evaporation, therefore they considered that

CHAPTER 13. ISOTOPES 90

evaporation happened to water pockets and puddles isolated from the soil water, and
no fractionation occurred as these evaporated completely. Activation of fractionation
resulted in numerical errors, because of an error in the implementation of Eq. (13.20),
where instead of the isotopic composition of the remaining water after evaporation δL,
it was used that of the water source before evaporation δW . The problem to correctly
implement Eq. (13.20) is that MAIDENiso does not know δL before it is calculated
from δW and δE:

LδL = WδW − EδE , (13.23)

where E is the evaporated water and W and L = W −E are the water quantities of
the evaporation source before and after the evaporation has taken place, respectively.
We can join Eqs. (13.23) and (13.20) to obtain a system of two equations with two
unknown variables δL and δE. Substitution of δE in Eq. (13.20) yields δL as a function
of δW and the water quantities W and E as:

δL =
1

W − E + E
(1−h+εK)α+

[
δWW −

E

(1− h+ εK)

(
− ε

+

α+
− hδA − εK

)]
. (13.24)

Once δL is obtained, we can use either Eq. (13.20) or Eq. (13.23) to obtain δE.

13.2.3.2 Sublimative fractionation

The incorporation of snow into the model implies that sublimative fractionation has to
be implemented as well. As snow remains exposed to the atmosphere for long periods
of time, sublimation is bound to have a much more significant effect on isotopic concen-
tration than evaporation. The isotopic composition of the sublimative flux is calculated
through the Craig-Gordon equation (13.20), changing some parameters respect to evap-
oration. While we still use n = 1 for snow in the canopy, the snow over the ground
is fully exposed to the air, and therefore we use n = 1/2 for it (evaporative flux from
liquid water in the snow layer also uses n = 1/2). More importantly, the solid-vapour
equilibrium isotopic fractionation α+ is different than that for liquid-vapour fractiona-
tion. Ellehoj et al. [2013] measured α+ between 0◦C and −40◦C and extrapolated the
following dependencies on temperature:

lnα+
18O = 0.0831− 49.192

T
+

8312.5

T 2
, (13.25)

lnα+
2H = 0.2133− 203.10

T
+

48888

T 2
. (13.26)

Other than α+ and n, the Craig-Gordon Equation remains the same for sublimation
as for evaporation.

CHAPTER 13. ISOTOPES 91

13.2.3.3 Melting and freezing fractionation

Following the original work by O’Neil [1968], the fractionation factor α+
s−l between ice

and water is defined by the isotopic ratios between the newly formed ice Rice and the
bulk water Rwater:

α+
s−l =

Rice

Rwater

=
1 + δice/1000

1 + δwater/1000
. (13.27)

O’Neil [1968] measured the ice-water fractionation factor for oxygen-18 and deu-
terium from two samples, obtaining α+

s−l,18O = 1.0029 and α+
s−l,2H = 1.0178 for the first

sample and α+
s−l,18O = 1.0031 and α+

s−l,2H = 1.0195 for the second one. A more recent

measurement by Lehmann and Siegenthaler [1991] yields α+
s−l,18O = 1.00291 ± 0.00003

and α+
s−l,2H = 1.0212 ± 0.0004. From Eq. (13.27), we obtain the isotopic composition

of the newly formed ice as:

δice = α+
s−l(1000 + δwater)− 1000 . (13.28)

However, we have to take into account that this is a Rayleigh process. As the
source water depletes, its isotopic composition changes and therefore it changes the
composition of the new ice:

δice = α+
s−l(1000 + δwater)f

α+
s−l−1 − 1000 , (13.29)

where f = W−Y
W

is the remaining fraction of the source water (whose isotopic com-
position was δwater), W being the quantity of source water and Y being the quantity of
this water that freezes. If we integrate this equation, we will obtain the composition of
the newly formed ice as a function of the new ice:

δice =
W

Y

(
δwater − (1000 + δwater)

(
W − Y
W

)α+
s−l

+ 1000
W − Y
W

)
. (13.30)

Freezing produces fractionation, because heavier water molecules freeze easier. How-
ever, no fractionation occurs during melting, because melting happens layer by layer
and individual ice crystals melt completely. Therefore, the isotopic composition of the
melted water is considered identical to that of the source ice/snow.

13.2.4 Tree-ring cellulose

The δ18O that is incorporated to the tree-ring cellulose in one particular day depends
directly on the δ18O of the xylem water, δ18OXW. This is taken from the δ18O compo-
sition of each soil layer (δ18Osoil,j), proportionally to their root fractions (rj):

δ18OXW[i] =
∑
j

+rjδ
18Osoil,j . (13.31)

CHAPTER 13. ISOTOPES 92

The oxygen-18 composition for tree-ring cellulose during day i is calculated as:

δ18OTRC[i] = (1− f0) · δ18Oleaf + f0 · δ18OXW + ε0 , (13.32)

with δ18Oleaf being the δ18O at leaf level:

δ18Oleaf [i] = ε∗ + εk · (1− RH) + RH · δ18OV + (1− RH) · δ18OXW . (13.33)

Here, f0 (unitless) is the dampening factor reflecting the exchange of the oxygen
atoms between sucrose and xylem water during the synthesis of cellulose in the xylem
cells of the tree rings, typically within a range of 0.4-0.5 [Roden and Ehleringer, 2000,
Saurer et al., 1997, Sternberg et al., 1986, Yakir, 1992]. ε0 is the biochemical frac-
tionation due to oxygen exchange between water and the carbonyl groups (C=O) in
the organic molecules, undetermined but expected in a range of 24-30 h [DeNiro and
Epstein, 1979, Farquhar et al., 1998]. εk is the kinetic fractionation due to the diffusion
of vapour into unsaturated air through the stomata and the leaf boundary layer, set to
26.5 h in Farquhar et al. [1989], but we consider it undetermined as it can vary over
larger ranges [Buhay et al., 1996]. ε∗ is the equilibrium fractionation due to the change
of phase of water from liquid to vapour at leaf temperature (fixed at 21.4 ◦C, which is
the temperature threshold for maximum carbon assimilation), with a value of 9.65 h
[Helliker and Richter, 2008]:

ε∗ = 103 exp(
−7.685 + 6.7123·103

Tleaf
− 1.6664·106

Tleaf
2 + 0.35041·109

Tleaf
3

103
− 1) . (13.34)

Following Linacre [1964], and in the absence of a species-specific equation, leaf
temperature is estimated as a linear function of air temperature:

Tleaf =
23

33
Tair + 10 , (13.35)

where constants are empirically-determined [Evans, 2007]. However, Helliker and
Richter [2008] showed a remarkably constant leaf temperature of Tleaf = 21.4 ± 2.2◦C
across 50◦ of latitude, from subtropical to boreal biomes. Inputing this temperature in
Eq. (13.34) gives ε∗ = 9.65 h.

Back to Eq. (13.33), RH is the relative humidity (see section 8.4). δ18OV is the δ18O
of vapour, which is calculated from δ18OP and the fractionation due to the phase change
from liquid water to vapour at mean air temperature, ε∗Tair

[Horita and Wesolowski,
1994]:

δ18OV[i] = δ18OP − ε∗Tair
. (13.36)

The δ18OTRC time series produced through Eq. (13.32) are daily, while the
δ18OTRC,yr measured from tree rings is commonly annually resolved, or occasionally
with intra-annual resolution (e.g. Szejner et al. [2018]). To produce a yearly record

CHAPTER 13. ISOTOPES 93

comparable with observations, the daily series have to be weighted. We have two pos-
sibilities to weight the daily δ18OTRC. The first, used in Lavergne et al. [2017] and
Hermoso de Mendoza et al. [2022] assumes that allocation of carbon to the trunk is
proportional to daily GPP:

δ18OTRC,yr[y] =

∑
i δ

18OTRC[i] ·GPP[i]∑
i GPP[i]

. (13.37)

The second possibility, used in Gennaretti et al. [2017], is to weight daily δ18OTRC

with the daily allocation of C to the stem CStemin[i] (gC m−2d−1, see section 15.2):

δ18OTRC,yr[y] =

∑
i δ

18OTRC[i] · CStemin[i]∑
i CStemin[i]

. (13.38)

It should be obvious that Eq. (13.38) is the right way to weight daily δ18OTRC.
However, the allocation of carbon to the different parts of the tree (see Chapter 15
requires to calibrate the allocation model at the site. If it is not possible to calibrate
the allocation model reliably, it is more convenient to use Eq. (13.37). Therefore, the
use of Eq. (13.37) or Eq. (13.38) is subject to the circumstances.

Chapter 14: Phenology

14.1 Phenology phases and allocation periods

There are two types of phases or chronological periods in MAIDENiso that should not
be confused: phenology and carbon allocation. To avoid a confusion between the two,
we use the term “phase” when talking about phenology, and the term “period” when
talking about carbon allocation. Phenological phases and carbon allocation periods
tend to be coincidental, since the transitions between carbon allocation periods (ex-
cept for the transition between Spring and Summer) is triggered by the transitions of
phenological phases. A schematic of these two chronologies is shown in Fig. 14.1.

Figure 14.1: Phenology phases and carbon allocation periods

14.2 Phenological phases

The phenological phases in MAIDENiso are the following [Gea-Izquierdo et al., 2015]:

• Phase 1: Early Winter phase. This is the phase entered after fall, without
growth and without the accumulation of growth degree days (gdd).

• Phase 2: Late Winter phase. In this winter phase the accumulation of growth
degree days is active. This is a cumulative quantity that triggers the growth phase
after reaching a threshold.

• Phase 3: Growth phase or Spring-Summer phase. This phase has both
Spring and Summer, though these are treated as separate carbon allocation peri-
ods.

94

CHAPTER 14. PHENOLOGY 95

• Phase 4: Fall. A short phase during which growth stops but photosynthesis
doesn’t. It is coincidental with the carbon allocation Fall period.

14.2.1 Phase transitions

The transitions between these phenological phases is determined mainly by meteorolog-
ical and radiative triggers (length of day), but influenced by a set of model parameters.
These are:

• vegphase12 : number of days that must be elapsed since the beginning of the
current year to change from Phase 1 to Phase 2.

• vegphase23 : threshold of days that Phase 2 can last until Phase 3.

• gdd thres: number of growing degree days that must be reached to trigger the
Spring phenological phase.

• thawedrootthres: threshold of proportion of roots that must be thawed to trigger
the Spring phenological phase (see section 11.6).

• phenolcount: number of days that must be elapsed since the beginning of the fall
phenophase to trigger the winter phenophases.

14.2.1.1 From Early Winter (phase 1) to Late Winter (phase 2)

To transition from Early to Late Winter, therefore activating the accumulation of gdd,
the current day of the year (DOY) must overtake the value of the parameter vegphase12.
There are no other triggers or conditions.

14.2.1.2 From Late Winter (phase 2) to Spring-Summer (phase 3)

The Spring-Summer phase comes in MAIDEN when both of these conditions are met:

• The DOY has reached the smoothed estimated transition day day23 sp.

• The roots are considered to be sufficiently ice-free, i.e. the flag thawflag has a
value of 1 (see section 11.6).

The yearly values day23 sp[y] are the spline-smoothed version of the yearly values
day23[y], which are calculated previous to the main MAIDENiso loop. Each year, day23
is calculated as the first DOY in which:

• The DOY reaches the threshold vegphase23, OR

CHAPTER 14. PHENOLOGY 96

• The daily accumulation of growing degree days reaches the threshold gdd thres.

This daily accumulation of growing degree days (gdd, ◦C) is the sum of the average
daily air temperatures Tavg above a temperature threshold parameter Tthres = 3◦C, this
is:

gdd[i] =

{
gdd[i− 1] + Tavg − Tthres if Tavg > Tthres & vegphase = 2

gdd[i− 1] otherwise
, (14.1)

14.2.1.3 From Spring-Summer (phase 3) to Fall (phase 4)

The fall comes in MAIDEN when one of the following conditions is met:

• The daily photoperiod (daylight hours) falls below the photoperiod thresh-
old photoperiodthres AND the photoperiod is decreasing (photoperiod[i] <
photoperiod[i− 1]), OR

• The DOY has reached day34min AND the Tmin < 0◦C, OR

• The DOY has reached day34max.

With day34min = 273 (September 30th) for Mediterranean and day34min = 244
(September 1st) for Boreal forests, while day34max = 350 for both.

The additional condition that the photoperiod must be currently decreasing was
added in MAIDENiso v4. This solved the unintended effect by which the Fall phase
would trigger immediately after the start of the Spring-Summer phase, if the Spring-
Summer phase started so early in the year that the photoperiod was still below
photoperiodthres.

14.2.1.4 From Fall (phase 4) to Early Winter (phase 1)

Once the Fall phase has started, a countdown starts for the start of the Early Winter
phase. This countdown is controlled by the parameter phenolcount and it typically has
a value of 9 days. This means that the Fall period always lasts the same number of
days, every year.

Chapter 15: Carbon allocation

15.1 Autotrophic respiration and NPP

Gross Primary Production (GPP, occasionally compared to Gross Ecosystem Produc-
tion or GEP) is determined in the photosynthesis module. GPP is first divided into
autotrophic respiration AR and net primary production (NPP). In MAIDEN, this par-
tition is determined by a fixed parameter nppfrac.

NPP[i] = nppfrac GPP[i] . (15.1)

AR[i] = (1− nppfrac) GPP[i] . (15.2)

This parameter is fixed at a value nppfrac = 0.47. This means that NPP, daily or
yearly, is always 47% of the GPP.

15.2 Tree carbon pools

There are 4 carbon reservoirs defined for the main parts of the tree. These 4 reservoirs
are:

• Leaf.

• Stem (defined as trunk wood + branch + bark).

• Root.

• Store.

For each reservoir, variables are defined daily for input (e.g. CStorein[i]), output
(CStoreout[i]), and net change (∆CStore[i] = CStorein[i] − CStoreout[i]). The stem
does not decrease over time, however the variables for this reservoir are still defined:

CStemout[i] = 0 . (15.3)

97

CHAPTER 15. CARBON ALLOCATION 98

Each day, the C contents of the reservoirs are updated as:

CLeaf[i+ 1] = CLeaf[i] + ∆CLeaf[i] , (15.4)

CStem[i+ 1] = CStem[i] + ∆CStem[i] , (15.5)

CRoot[i+ 1] = CRoot[i] + ∆CRoot[i] , (15.6)

CStore[i+ 1] = CStore[i] + ∆CStore[i] , (15.7)

with:
∆CLeaf[i] = CLeafin[i]− CLeafout[i] , (15.8)

∆CStem[i] = CStemin[i]− CStemout[i] , (15.9)

∆CRoot[i] = CRootin[i]− CRootout[i] , (15.10)

∆CStore[i] = CStorein[i]− CStoreout[i] , (15.11)

15.2.1 Leaf Area Index

Every day, the leaf area index (LAI) is calculated, in the case of the mediterranean
forest, as:

LAI[i] =
CLeaf[i]

1
SLA

· SLA , (15.12)

and in the case of the boreal forest, as:

LAI[i] =
CLeaf[i]
percCLeaf

SLA

· SLA , (15.13)

where SLA is the specific leaf area (leaf area per unit of mass), and percCLeaf is
the fraction of carbon content in the leaves, both of them model parameters (we use
SLA = 0.004234 m2 g−1 and percCLeaf = 0.49 for black spruce).

15.3 Canopy target

At the beginning of the year, the tree estimates the how much carbon it will need in
the new year, based on a target of leaves and roots. The excess carbon will be later
used in storage and growing the stem. The maximum amount of carbon that can be
contained in the canopy, MaxCcanopy, is:

MaxCcanopy =
LAImax

SLA
percCLeaf , (15.14)

CHAPTER 15. CARBON ALLOCATION 99

where SLA is the specific leaf area (leaf area per unit of mass) and LAImax is the
maximum LAI, all of which are parameters determined by the tree species (for boreal,
we use SLA = 0.004234, percCLeaf = 0.49 and LAImax = 3.3). MaxCcanopy is directly
proportional to LAImax, however the LAI will not always be the maximum possible.
The tree loses leaves during the year and has to produce new ones. In general, the
amount of leaf carbon targeted by the tree or canopy target, Cmax, is not going to be
equal to MaxCcanopy. The Cmax for each year is calculated the first day of that year,
but different models can be used to estimate Cmax.

Mediterranean trees use one model to calculate the canopy target Cmax [Gea-
Izquierdo et al., 2015], while there are three different models available for boreal trees.
The original model for boreal trees was designed in Gennaretti et al. [2017] and use in
the latter publications [Lavergne et al., 2017, Hermoso de Mendoza et al., 2022], how-
ever this model depends on meteorological statistics over the entire simulation period
to set the canopy target for any given year, which does not allow to use this model in
some circumstances. Two alternative models have been designed in order to provide an
alternative method of calculating a canopy target that is independent of future years.

15.3.1 Mediterranean model

For Mediterranean trees, we use the model developed by Gea-Izquierdo et al. [2015]. In
this model, the canopy target for the new year y is calculated as:

Cmax[y] = (1− Cmaxslope
LAIperc − Hstress

LAIperc

) ·MaxCcanopy , (15.15)

where Cmaxslope is a parameter that determines the slope of Cmax, LAIperc = 250
is a parameter to compute the yearly carbon that will be allocated to leaf and root
as a function of the previous year soil moisture. The hydraulic stress of the previous
year, Hstress, is the average of the soil water content (SWC) of the last 250 days of the
previous year (Hstress = 0 for the first year):

Hstress =
1

250

j=250∑
j=1

SWC[i− j] , (15.16)

being i the first day of the corresponding year.

Cmax is only allowed to vary within the interval Cmax = [0.7, 1]MaxCcanopy. An
addition posterior to Gea-Izquierdo et al. [2015] is that if Cmax is lower than the actual
amount of carbon in the canopy at the time it is calculated (CLeaf at the first day of
the year), Cmax is increased by 30 gC.

CHAPTER 15. CARBON ALLOCATION 100

15.3.2 Boreal model

In the allocation model for boreal forest created by Gennaretti et al. [2017] the amount
of canopy carbon targeted by the tree, Cmax, is set to vary within 70%-100% of the
maximum:

Cmax[y] = MaxCcanopy · (0.7 + 0.3 · CanopyMult) . (15.17)

The 30% that Cmax can vary is controlled by a factor CanopyMult that represents
the overall climate dependence:

CanopyMult[y] =
1

1 + exp(CanopyT · Tempyr−1)
· 1

1 + exp(CanopyP · Pspring)
,

(15.18)

where Tempyr−1 is the previous-year mean July–August temperature (detrended
and transformed to z scores), Pspring is the previous-year April precipitation (detrended
and transformed to z scores), and CanopyT and CanopyP are two parameters to be
optimized and that represent the slopes of the relationships between CanopyMult and
Tempyr−1 or Pspring, respectively.

This boreal allocation model has been applied with great success to boreal forests
[Gennaretti et al., 2017, Lavergne et al., 2017, Hermoso de Mendoza et al., 2022]. How-
ever, a weakness arises from the need to detrend Tempyr−1 and Pspring, as we compare
these quantities from the previous year with those of the whole simulation period, in-
cluding those in the future. This does not make sense mechanistically, and therefore
this allocation model is likely to be replaced in future versions of MAIDENiso.

15.4 Yearly Carbon demand

Once calculated the canopy target for this year Cmax[y], the model calculates the
amount of carbon that needs to be allocated to the canopy to reach the target this
year, CLeafgrowth[y]. This is calculated from the difference between Cmax[y] and the
carbon content of the canopy at the start of the year CLeaf[365(y − 1) + 1] (we count
the first year as y = 1, not as y = 0):

CLeafgrowth[y] = Cmax[y]− CLeaf[365(y − 1) + 1] . (15.19)

The carbon content of the roots is supposed proportional to that of the canopy,
therefore the amount of carbon that needs to be allocated to the roots this year is:

CRootgrowth[y] = proot−leaf Cmax[y]− CRoot[365(y − 1) + 1] , (15.20)

where proot−leaf is the ratio of leaf carbon reservoir to root carbon reservoir, and
CRoot[365(y − 1) + 1] is the carbon content of the roots at the start of the year y.

CHAPTER 15. CARBON ALLOCATION 101

The yearly demand of carbon is therefore:

YearCdemand[y] = CRootgrowth + CLeafgrowth . (15.21)

And the ratio between the carbon in the leaves and the roots rleaf , which is used to
partition the Spring carbon supply between leaves and roots, is calculated as:

rleaf [y] =
CLeafgrowth

YearCdemand
(15.22)

15.5 Leaf losses

Depending on the tree being deciduous or evergreen, it is defined to lose its leaves
differently. For evergreen trees, the canopy is defined to lose leaves at a constant rate,
during any phenological phase:

CLeafout[i] = PercentFall · AlloCCanopy·(
exp(−0.5

(
DOY[i− 1]

OutMax

)OutLength

)− exp(−0.5

(
DOY[i]

OutMax

)OutLength

)

)
, (15.23)

where PercentFall is the yearly canopy turnover rate, OutMax is the approximate
day of the year with maximum losses, OutLength is the index proportional to the
length of the period with losses, DOY[i− 1] is the day of the year corresponding to the
simulation day i, and AlloCCanopy is defined as AlloCCanopy = Cmax in the case of
Picea Mariana or as AlloCCanopy = MaxCcanopy for Mediterranean species.

For deciduous trees, Leafouti = 0 during Winter, Spring and Summer. During Fall:

CLeafout[i] =
1

1 + phenolcount
·MaxCcanopy , (15.24)

where phenolcount is the length of the senescence period (in days).

15.6 Carbon allocation periods

Carbon allocation periods are distinct from phenological phases, even though the two
tend to coincide. This was explained in section 14.1. In this section we explain the
rules that regulate the transitions between the four distinct carbon allocation periods:

• Period 1: Winter. Carbon from photosynthesis (which only happens under mild
conditions for evergreens) is allocated to the storage.

CHAPTER 15. CARBON ALLOCATION 102

• Period 2: Spring. Carbon from photosynthesis, plus a contribution from the
tree’s carbon storage, is used for the growth of leafs and roots in order to reach
the canopy target.

• Period 3: Summer. Carbon from photosynthesis is used for stem growth and
replenishment of the carbon storage, split between the two.

• Period 4: Fall. Carbon from photosynthesis is allocated to the storage. Root
mortality happens only in this period

15.6.1 Period transitions

With the exception of Spring to Summer, all the carbon allocation periods are triggered
by the corresponding changes in phenological phase. Therefore, the carbon allocation
periods are coincidental with the phenological phases, except for the Winter carbon
allocation period which corresponds to two phenological phases (early Winter and late
Winter), and the Growth or Spring-Summer phenological phase which corresponds to
two carbon allocation periods (Spring and Summer).

From Winter to Spring

The transition from the Winter to the Spring carbon allocation periods is triggered by
the transition from the Late Winter to the Spring-Summer phenological phases.

From Spring to Summer

The transition from the Spring to the Summer carbon allocation periods is given when
one of these conditions is true:

• The amount of carbon in the canopy CLeaf has reached the canopy target (Cmax),
OR

• The amount of carbon in the storage CStore has fallen below the minimum (pa-
rameter glumin), OR

• The Spring C allocation period has lasted more than the limit (50 days for boreal,
365 days for mediterranean).

From Summer to Fall

The transition from the Summer to the Fall carbon allocation periods is triggered by
the transition from the Spring-Summer to the Fall phenological phases.

CHAPTER 15. CARBON ALLOCATION 103

From Fall to Winter

The transition from the Fall to the Winter carbon allocation periods is triggered by the
transition from the Fall to the Early Winter phenological phases.

15.7 Carbon allocation rules

In this section we explain the rules that are active during the carbon allocation periods.

15.7.1 Winter allocation

No growth happens during winter. For evergreens, when there is photosynthesis in win-
ter (e.g. under mild conditions like in Mediterranean ecosystems) this readily available
carbon is directed to the store reservoir in the model.

CLeafin[i] = 0 , (15.25)

CRootin[i] = 0 , (15.26)

CStemin[i] = 0 , (15.27)

CStorein[i] = NPP[i] . (15.28)

The reservoirs do not decrease during winter, with the exception of canopy losses
for evergreen trees.

CRootout[i] = 0 , (15.29)

CStoreout[i] = 0 . (15.30)

15.7.2 Spring allocation

Spring is the only period when leaves and roots increase. Carbon is pulled from the
store to aid the growth of leaves and roots, and some carbon is also allocated to the
stem. A daily carbon offer dayCoffer[i] is defined by the NPP of that day and the
parameter StorBud (gC m−2d−1), that gives the speed at which the tree can access
carbon from its storage:

dayCoffer[i] = NPP[i] + StorBud . (15.31)

Using this daily carbon offer, the model allocates carbon to its parts. For the leaves,
the roots and the stem, the daily amount is calculated as:

CLeafin[i] = BudToLeaf[i] · dayCoffer[i] · rleaf , (15.32)

CHAPTER 15. CARBON ALLOCATION 104

CRootin[i] = BudToLeaf[i] · dayCoffer[i] · (1− rleaf) , (15.33)

CStemin[i] = (1− BudToLeaf) · dayCoffer[i] , (15.34)

CStorein[i] = 0 . (15.35)

In these equations, BudToLeaf[i] determines the partition of the daily available
carbon between the stem and the leaves-roots system:

BudToLeaf[i] = StorMoistLeaf1 · exp

(
−0.5

(
Tmax[i]− BudLeafTmaxip

BudLeafTmaxb

)2
)

,

(15.36)

where Tmax[i] is the maximum temperature of the day i, BudLeafTmaxip and
BudLeafTmaxb are parameters controlling respectively the inflection point and slope for
the temperature dependence of BudToLeaf, and StorMoistLeaf1 is the portion allocated
to canopy and roots when Tmax[i] = BudLeafTmaxip.

The store is depleted during this time, as it contributes to the daily offer:

CRootout[i] = 0 , (15.37)

CStoreout[i] = StorBud . (15.38)

15.7.3 Summer allocation

In summer, allocation is directed only towards the stem and the store, with no growth
in the canopy or the roots. The partition of carbon between the two is given by nppstor,
the fraction of NPP that goes to the store:

nppstor[i] = 0.8 exp

(
−0.5

(
Tmax[i]

parnppstor

)2
)

, (15.39)

where parnppstor is the inflection point of the temperature dependence. The daily
increases of the reservoirs during this period are:

CLeafin[i] = 0 , (15.40)

CRootin[i] = 0 , (15.41)

CStemin[i] = (1− nppstor[i]) · NPP[i] , (15.42)

CStorein[i] = nppstor[i] · NPP[i] . (15.43)

Other than leaves (for evergreen trees), no reservoirs decrease during Summer.

CRootout[i] = 0 , (15.44)

CStoreout[i] = 0 . (15.45)

CHAPTER 15. CARBON ALLOCATION 105

15.7.4 Fall allocation

During Fall, no growth is allowed in canopy, roots, or stem: all the positive NPP goes
to the storage:

CLeafin[i] = 0 , (15.46)

CRootin[i] = 0 , (15.47)

CStemin[i] = 0 , (15.48)

CStorein[i] = NPP[i] . (15.49)

Meanwhile, the roots decrease during this season:

CRootout[i] =
RootTurn

1 + phenolcount
· CRoot , (15.50)

where RootTurn is the fraction of root turnover and rootperleaf.

No carbon is extracted from the store in this season:

CStoreout[i] = 0 , (15.51)

In the case of deciduous trees, the canopy decreases during Fall. For evergreen trees,
there is decrease of the canopy during the other seasons as well (see section 15.5).

Chapter 16: Photosynthesis

Photosynthesis is calculated on a daily basis, thus all quantities in this section are
dependent on day i (unless they are constants). To avoid making tedious, we do not
explicitly write the dependency on the time step on the right side of the equations as
we do in other sections.

16.1 Photosynthesis model

The net CO2 assimilation rate (An, µmol CO2 m−2 s−1) in MAIDENiso is calculated
based on the biochemical model of Farquhar for C3 plants [Farquhar et al., 1980], where
it is the difference between the potential assimilation rate Ap (µmol CO2 m−2 s−1) and
the mitochondrial (or dark) respiration Rd (µmol CO2 m−2 s−1):

An[i] = Ap − Rd , (16.1)

Ap[i] = min(Wc,Wj) , (16.2)

where Wc (µmol CO2 m−2 s−1) and Wj (µmol CO2 m−2 s−1) are the rate of photo-
synthesis limited by Rubisco activity and by the rate of RuBP regeneration through
electron transport, respectively. Wc, Wj and Rd are estimated following:

Wc[i] =
Vcmax · (Ci − Γ∗)

Ci + Km

, (16.3)

Wj[i] =
J · (Ci − Γ∗)

4Ci + 8Γ∗
, (16.4)

Rd[i] = fAp , (16.5)

where Ci (Pa) is the leaf-internal partial pressure of CO2, Γ∗ (Pa) is the CO2 com-
pensation point in the absence of dark respiration, Km (Pa) is the effective Michaelis-
Menten constant for Rubisco-limited photosynthesis at ambient partial pressure of O2,
Vcmax (µmol C m−2 s−1) is the maximum carboxylation rate, J (µmol C m−2 s−1) is
the electron transport rate and f = 0.0256270 is the dark respiration coefficient.

106

CHAPTER 16. PHOTOSYNTHESIS 107

Γ∗ is calculated following Bernacchi et al. [2001]:

Γ∗[i] = 42.75 · 10−6 Patm exp(
37830 (Tday − 25)

298.15 R (Tday + 273.15)
) ≥ 0 , (16.6)

with Patm (Pa) being the atmospheric pressure (Eq. (8.7)) and Tday (K) the daily
air temperature (Eq. (8.5)).

Km is calculated following Bernacchi et al. [2001] as:

Km[i] = Kc · (1 +
PO2

Ko
) , (16.7)

where:
PO2[i] = 0.2095 · Patm . (16.8)

Ko[i] = 0.2784 Patm exp(
36380 (Tday − 25)

298.15 R (Tday + 273.15)
) . (16.9)

Kc[i] = 404.9 · 10−6 Patm exp(
79430 (Tday − 25)

298.15 R (Tday + 273.15)
) . (16.10)

Ko (Pa) and Kc (Pa) are the Michaelis-Menten constants of Rubisco for oxygenation
and carboxylation, respectively, and R is the universal gas constant (J mol−1 K−1).

Vcmax is defined as:

Vcmax[i] =
Vmax

1 + exp(Vb · S − Vip)
· θp , (16.11)

where θp = 1− exp(pstr · SWC180) > 0 is an empirical water stress function mainly
applied to species living in Mediterranean environments (θp = 1 for other species).
Vmax, Vb and Vip are calibrated parameters controlling the maximum value, the
slope and the inflexion point of the dependence of Vcmax on temperature. S (K) is a
temperature response function describing the acclimation of photosynthesis to Tday:

S[i] =
Tday[i]− S[i− 1]

τ
+ S[i− 1] , (16.12)

where τ is a parameter interpreted as the number of days needed by the photosyn-
thetic apparatus to acclimate to changing temperature.

The electron transport rate (J, µmol m−2 s−1) is calculated as [De Pury and Far-
quhar, 1997]:

J[i] =
α · a · I + Jmax−

√
(α · a · I + Jmax)2 − 4α · a · I · Jmax · θ

2θ
≥ 0 , (16.13)

CHAPTER 16. PHOTOSYNTHESIS 108

with Jmax (µmol m−2 s−1) being the maximum potential rate of electron transport,
I (µmol m−2 s−1) the absorbed photosynthetic photon flux density (see section 16.3),
a = 0.85 the leaf absorptance to absorbed photosynthetic photon flux density, θ the
curvature of the light response curve (model parameter, typically θ = 0.677), and
α = 0.21 the quantum efficiency of electron transport (mol electron / mol photon).

Jmax is proportional to Vcmax, modulated by a parameter pJmax = 2.7365:

Jmax[i] = pJmax · Vcmax . (16.14)

16.2 Stomatal conductance model

The stomatal conductance for carbon (µmol m−2 s−1) is calculated using a modified
version of the Leuning model [Leuning et al., 1995]:

gsc[i] = g0 + g1
An

(Ca − Γ∗)(1 + VPD/VPD0) ∗ 106/Patm

θg , (16.15)

where g0 (µmol m−2 s−1, assumed to be 0) is the residual stomatal conductance
as An approaches zero, and g1 (unitless, assumed equal to 10.00235) is a parameter
controlling the slope of the function, related to intercellular CO2 concentration at sat-
urating irradiance by 1/g1 = 1−Ci/Ca. Ca = sCO2 ·Patm · 10−6 is the atmospheric CO2
pressure (Pa), sCO2 being the concentration of atmospheric CO2 in ppm. VPD is the
vapour pressure deficit (kPa), and VPD0 is an empirically fitted parameter representing
the sensitivity of stomata to changes in VPD (usually around 15 kPa; Knauer et al.
[2015]). θg is the empirical soil water stress factor, ranging between 0 when the soil is
too dry for the roots and 1 in absence of water stress (see subsection 11.3.1.3).

The CO2 diffusion equation (Fick’s law) links An with gsc as:

An[i] = gsc(Ca − Ci) , (16.16)

Rearranging the terms allows to estimate Ci as a function of gsc:

Ci[i] = Ca −
An

gsc

, (16.17)

Combining Eqs. (16.15) and (16.17) and assuming g0 = 0 thus gives:

Ci[i] = Ca −
Ca − Γ∗

g1 · rh
, (16.18)

with:

rh[i] =
θg

(1 + VPD/VPD0)
, (16.19)

CHAPTER 16. PHOTOSYNTHESIS 109

.

Equation 16.15 can be rewritten as:

gsc =
An

(Ci − Ca) · 106/Patm

. (16.20)

16.3 Scaling photosynthesis from leaf to canopy: a

two canopy layers approach

The canopy is divided into two layers, i.e. sunlit and shaded leaves. The leaf-level
photosynthesis is upscaled independently for these two layers.

The absorbed photosynthetic photon flux density I (µmol m−2 s−1) for the sun and
shaded parts is calculated following:

Isun[i] = EPAR ·
PARsun

LAIsun

, (16.21)

Ishade[i] = EPAR ·
PARshade

LAIshade

. (16.22)

where PAR is the photosynthetically active radiation, EPAR = 4.55 µmol J−1 is the
PAR photon energy ratio, and LAI represents the leaf area index. Projected LAI for
sunlit (LAIsun) and shaded (LAIshade) canopy portions are defined as:

LAIsun[i] = 1− exp(−LAI) . (16.23)

LAIshade[i] = LAI− LAIsun . (16.24)

The PAR absorbed by the sunlit (PARsun) and shaded (PARshade) canopy fractions
are defined as:

PARsun[i] = k · PARtop · LAIsun , (16.25)

PARshade[i] = PARabs − LAIsun , (16.26)

where:
PARtop[i] = sPAR · (1−

αSW
3

) , (16.27)

PARabs[i] = PARtop · (1− exp(−k · LAI)) . (16.28)

Here, k is the extinction factor (unitless parameter, we set k = 0.9 for black spruce),
αSW = 0.2 is the site shortwave albedo (unitless) and PAR is the photosynthetically
active radiation from Eq. (9.37).

The photosynthetic photon flux density I (sunlit or shaded) is then used to calculated
the electron transport rate J for the sunlit and shaded portions (Jsun and Jshade) from

CHAPTER 16. PHOTOSYNTHESIS 110

Eq. (16.13). This in turn gives a different rate of RuBP regeneration Wj in Eq. (16.4),
and thus we obtain different net assimilation rates of An for the sunlit and shaded parts,
i.e. An,sun and An,shade.

The canopy-scale photosynthesis, i.e. the gross primary production GPP
(gC m−2 d−1) is calculated independently for the sunlit (GPPsun, gC m−2 d−1) and
shaded (GPPshade, gC m−2 d−1) parts and added together:

GPP[i] = GPPsun + GPPshade , (16.29)

GPPsun[i] = An,sun · LAIsun · dayL ·MC · 10−6 , (16.30)

GPPshade[i] = An,shade · LAIshade · dayL ·MC · 10−6 , (16.31)

where dayL is the daytime length (s d−1, dependent on the day of the year, see Eq.
(9.4)), MC = 12.011 g mol−1 is the molecular weight of carbon, and the multiplicative
factor 10−6 comes from the conversion of µmol to mol.

The net primary production NPP (gC m−2 d−1) is calculated as a fraction of the
GPP, controlled by a constant parameter nppfrac (fixed at nppfrac = 0.47 for black
spruce) as already expressed in Eq. 15.1:

NPP[i] = nppfrac ·GPP . (16.32)

16.4 Transpiration

The stomatal conductance for water (µmol m−2 s−1) can be expressed as:

gsw[i] = 1.6 gsc = 1.6
An

(Ca − Ci) · 106/Patm

. (16.33)

Water transpiration (mm/d) is then calculated for the sunlit and shaded parts:

qtran,sun[i] = gsw ·
VPD

Patm

· LAIsun · dayL ·MW , (16.34)

qtran,shade[i] = ·gsw ·
VPD

Patm

· LAIshade · dayL ·MW , (16.35)

where MW = 18.0148 · 10−3 kg mol−1 is the molecular weight of water.

The total daily transpiration (mm/d) is calculated as:

qtran[i] = qtran,sun + qtran,shade . (16.36)

Bibliography

P. Abbott and R. Tabony. The estimation of humidity parameters. Meteorological
Magazine, 114(1351):49–56, 1985.

D. Baldocchi and T. Meyers. On using eco-physiological, micrometeorological and
biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes
over vegetation: a perspective. Agricultural and Forest Meteorology, 90(1-2):1–25,
1998. doi: 10.1016/S0168-1923(97)00072-5.

M. N. Berberan-Santos, E. N. Bodunov, and L. Pogliani. On the barometric formula.
American Journal of Physics, 65(5):404–412, 1997. doi: 10.1119/1.18555.

C. Bernacchi, E. Singsaas, C. Pimentel, A. Portis Jr, and S. P. Long. Improved tem-
perature response functions for models of rubisco-limited photosynthesis. Plant, Cell
& Environment, 24(2):253–259, 2001. doi: 10.1111/j.1365-3040.2001.00668.x.

P. Blanken and T. Black. The canopy conductance of a boreal aspen forest, Prince
Albert National Park, Canada. Hydrological Processes, 18(9):1561–1578, 2004. doi:
10.1002/hyp.1406.

É. Boucher, J. Guiot, C. Hatté, V. Daux, P.-A. Danis, and P. Dussouillez. An in-
verse modeling approach for tree-ring-based climate reconstructions under chang-
ing atmospheric CO2 concentrations. Biogeosciences, 11(12):3245–3258, 2014. doi:
10.5194/bg-11-3245-2014.

W. Buhay, T. Edwards, and R. Aravena. Evaluating kinetic fractionation factors used
for ecologic and paleoclimatic reconstructions from oxygen and hydrogen isotope
ratios in plant water and cellulose. Geochimica et Cosmochimica Acta, 60(12):2209–
2218, 1996. doi: 10.1016/0016-7037(96)00073-7.

H. Craig and L. I. Gordon. Deuterium and oxygen 18 variations in the ocean and
the marine atmosphere. Consiglio nazionale delle richerche, Laboratorio de geologia
nucleare Pisa, 1965.

A. Dai. Temperature and pressure dependence of the rain-snow phase transition
over land and ocean. Geophysical Research Letters, 35(12), 2008. doi: 10.1029/
2008GL033295.

111

BIBLIOGRAPHY 112

P.-A. Danis, C. Hatté, L. Misson, and J. Guiot. MAIDENiso: a multiproxy biophysical
model of tree-ring width and oxygen and carbon isotopes. Canadian journal of forest
research, 42(9):1697–1713, 2012. doi: 10.1139/x2012-089.

D. De Pury and G. Farquhar. Simple scaling of photosynthesis from leaves to canopies
without the errors of big-leaf models. Plant, Cell & Environment, 20(5):537–557,
1997. doi: 10.1111/j.1365-3040.1997.00094.x.

M. J. DeNiro and S. Epstein. Relationship between the oxygen isotope ratios of terres-
trial plant cellulose, carbon dioxide, and water. Science, 204(4388):51–53, 1979. doi:
10.1126/science.204.4388.51.

M. Ellehoj, H. C. Steen-Larsen, S. J. Johnsen, and M. B. Madsen. Ice-vapor equilibrium
fractionation factor of hydrogen and oxygen isotopes: Experimental investigations
and implications for stable water isotope studies. Rapid Communications in Mass
Spectrometry, 27(19):2149–2158, 2013. doi: 10.1002/rcm.6668.

M. Evans. Toward forward modeling for paleoclimatic proxy signal calibration: A case
study with oxygen isotopic composition of tropical woods. Geochemistry, Geophysics,
Geosystems, 8(7), 2007. doi: 10.1029/2006GC001406.

G. Farquhar, K. Hubick, A. Condon, and R. Richards. Carbon isotope fractionation
and plant water-use efficiency. In Stable isotopes in ecological research, pages 21–40.
Springer, 1989. doi: 10.1007/978-1-4612-3498-2 2.

G. Farquhar, M. Barbour, and B. Henry. Interpretation of oxygen isotope composition of
leaf material. In Stable isotopes: Integration of Biological, Ecological and Geochemical
Processes, pages 27–62. Garland Science, 1998. ISBN 9781003076865.

G. D. Farquhar, S. v. von Caemmerer, and J. A. Berry. A biochemical model of
photosynthetic co 2 assimilation in leaves of c 3 species. Planta, 149(1):78–90, 1980.
doi: 10.1007/bf00386231.

J. R. Gat. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of
Earth and Planetary Sciences, 24(1):225–262, 1996. doi: 10.1146/annurev.earth.24.
1.225.

D. M. Gates. Solar radiation. In Biophysical Ecology, pages 96–147. Springer, 1980.
ISBN 978-0486428840.

C. Gaucherel, F. Campillo, L. Misson, J. Guiot, and J.-J. Boreux. Parameterization
of a process-based tree-growth model: comparison of optimization, mcmc and parti-
cle filtering algorithms. Environmental Modelling & Software, 23(10-11):1280–1288,
2008. doi: 10.1016/j.envsoft.2008.03.003.

BIBLIOGRAPHY 113

G. Gea-Izquierdo, F. Guibal, R. Joffre, J. Ourcival, G. Simioni, and J. Guiot. Modelling
the climatic drivers determining photosynthesis and carbon allocation in evergreen
mediterranean forests using multiproxy long time series. Biogeosciences, 12(12):3695–
3712, 2015. doi: 10.5194/bg-12-3695-2015.

F. Gennaretti, G. Gea-Izquierdo, E. Boucher, F. Berninger, D. Arseneault, and J. Guiot.
Ecophysiological modeling of the climate imprint on photosynthesis and carbon allo-
cation to the tree stem in the north american boreal forest. Biogeosciences, 14(21):
4851–4866, 2017. doi: 10.5194/bg-14-4851-2017.

J. Gibson, S. Birks, and T. Edwards. Global prediction of δa and δ2h-δ18o evaporation
slopes for lakes and soil water accounting for seasonality. Global Biogeochemical
Cycles, 22(2), 2008. doi: 10.1029/2007GB002997.

W. Greuell and T. Konzelmann. Numerical modelling of the energy balance and the
englacial temperature of the greenland ice sheet. calculations for the eth-camp loca-
tion (west greenland, 1155 m asl). Global and Planetary change, 9(1-2):91–114, 1994.
doi: 10.1016/0921-8181(94)90010-8.

A. Harpold, M. Kaplan, P. Klos, T. Lind, J. P. McNamara, S. Rajagopal, R. Schumer,
and C. Steele. Rain or snow: hydrologic processes, observations, prediction,
and research needs. Hydrology and Earth System Sciences, 2017. doi: 10.5194/
hess-21-1-2017.

B. R. Helliker and S. L. Richter. Subtropical to boreal convergence of tree-leaf temper-
atures. Nature, 454(7203):511–514, 2008. doi: 10.1038/nature07031.

I. Hermoso de Mendoza, E. Boucher, F. Gennaretti, A. Lavergne, R. Field, and
L. Andreu-Hayles. A new snow module improves predictions of the isotope-enabled
maideniso forest growth model. Geoscientific Model Development, 15(5):1931–1952,
2022.

J. Horita and D. J. Wesolowski. Liquid-vapor fractionation of oxygen and hydrogen
isotopes of water from the freezing to the critical temperature. Geochimica et Cos-
mochimica Acta, 58(16):3425–3437, 1994. doi: 10.1016/0016-7037(94)90096-5.

J. V. Iribarne and W. L. Godson. Atmospheric thermodynamics, volume 6. Springer
Science & Business Media, 1981. ISBN 978-94-009-8509-4.

C. Jaupart and J.-C. Mareschal. Heat generation and transport in the Earth. Cambridge
university press, 2010.

M. Jones. Plant microclimate. In Photosynthesis and production in a changing envi-
ronment, pages 47–64. Springer, 1993. doi: 10.1007/978-94-011-1566-7 4.

BIBLIOGRAPHY 114

J. Knauer, C. Werner, and S. Zaehle. Evaluating stomatal models and their at-
mospheric drought response in a land surface scheme: A multibiome analysis.
Journal of Geophysical Research: Biogeosciences, 120(10):1894–1911, 2015. doi:
10.1002/2015jg003114.

A. Lavergne, F. Gennaretti, C. Risi, V. Daux, E. Boucher, M. Savard, M. Naulier,
R. Villalba, C. Begin, and J. Guiot. Modelling tree ring cellulose δ18o variations in
two temperature-sensitive tree species from north and south america. Climate of the
Past, 13(11):1515–1526, 2017. doi: 10.5194/cp-13-1515-2017.

A. Lavergne, D. Sandoval, V. J. Hare, H. Graven, and I. C. Prentice. Impacts of soil
water stress on the acclimated stomatal limitation of photosynthesis: insights from
stable carbon isotope data. Global Change Biology, 26(12):7158–7172, 2020. doi:
10.1111/gcb.15364.

D. M. Lawrence, R. A. Fisher, C. D. Koven, K. W. Oleson, S. C. Swenson, G. Bonan,
N. Collier, B. Ghimire, L. van Kampenhout, D. Kennedy, E. Kluzek, P. J. Lawrence,
F. Li, H. Li, D. Lombardozzi, W. J. Riley, W. J. Sacks, M. Shi, M. Vertenstein,
W. R. Wieder, C. Xu, A. A. Ali, A. M. Badger, G. Bisht, M. van den Broeke, M. A.
Brunke, S. P. Burns, J. Buzan, M. Clark, A. Craig, K. Dahlin, B. Drewniak, J. B.
Fisher, M. Flanner, A. M. Fox, P. Gentine, F. Hoffman, G. Keppel-Aleks, R. Knox,
S. Kumar, J. Lenaerts, L. R. Leung, W. H. Lipscomb, Y. Lu, A. Pandey, J. Pelletier,
Jon D. andn Perket, J. T. Randerson, D. M. Ricciuto, B. M. Sanderson, A. Slater,
Z. M. Subin, J. Tang, R. Q. Thomas, M. Val Martin, and X. Zeng. The community
land model version 5: Description of new features, benchmarking, and impact of
forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11(12):4245–
4287, 2019. doi: 10.1029/2018MS001583.

G. Leavesley, P. J. Restrepo, S. Markstrom, M. Dixon, and L. Stannard. The modular
modeling system (mms): User’s manual. US Geological Survey Open-File Report, 96
(151,142), 1996. URL https://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.592.6662&rep=rep1&type=pdf.

M. Lehmann and U. Siegenthaler. Equilibrium oxygen-and hydrogen-isotope frac-
tionation between ice and water. Journal of Glaciology, 37(125):23–26, 1991. doi:
10.3189/S0022143000042751.

R. Leuning, F. M. Kelliher, D. De Pury, and E.-D. Schulze. Leaf nitrogen, photosyn-
thesis, conductance and transpiration: scaling from leaves to canopies. Plant, Cell &
Environment, 18(10):1183–1200, 1995. doi: 10.1111/j.1365-3040.1995.tb00628.x.

E. Linacre. A note on a feature of leaf and air temperatures. Agricultural Meteorology,
1(1):66–72, 1964. doi: 10.1016/0002-1571(64)90009-3.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.592.6662&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.592.6662&rep=rep1&type=pdf

BIBLIOGRAPHY 115

J. Mahfouf and J. Noilhan. Comparative study of various formulations of evaporations
from bare soil using in situ data. Journal of Applied Meteorology, 30(9):1354–1365,
1991. doi: 10.1175/1520-0450(1991)030〈1354:CSOVFO〉2.0.CO;2.

G. J. McCabe and D. M. Wolock. Recent declines in western us snowpack in the context
of twentieth-century climate variability. Earth Interactions, 13(12):1–15, 2009. doi:
10.1175/2009EI283.1.

L. Misson. MAIDEN: a model for analyzing ecosystem processes in dendroecology.
Canadian Journal of Forest Research, 34(4):874–887, 2004. doi: 10.1139/x03-252.

J. L. Monteith. Evaporation and environment. In Symposia of the society for ex-
perimental biology, volume 19, pages 205–234. Cambridge University Press (CUP)
Cambridge, 1965.

J. R. O’Neil. Hydrogen and oxygen isotope fractionation between ice and water. The
Journal of Physical Chemistry, 72(10):3683–3684, 1968.

A. Passerat de Silans. Transferts de masse et de chaleur dans un sol stratifié soumis
à une excitation atmosphérique naturelle: comparaison: modèles-expérience. PhD
thesis, Grenoble INPG, 1986.

J. Pomeroy, D. Gray, K. Shook, B. Toth, R. Essery, A. Pietroniro, and N. Hed-
strom. An evaluation of snow accumulation and ablation processes for land sur-
face modelling. Hydrological Processes, 12(15):2339–2367, 1998. doi: 10.1002/(SICI)
1099-1085(199812)12:15〈2339::AID-HYP800〉3.0.CO;2-L.

J. S. Roden and J. R. Ehleringer. Hydrogen and oxygen isotope ratios of tree ring
cellulose for field-grown riparian trees. Oecologia, 123(4):481–489, 2000. doi: 10.
1007/s004420000349.

J. Ross. Radiative transfer in plant communities. Vegetation and the Atmosphere, pages
13–55, 1975.

M. Saurer, K. Aellen, and R. Siegwolf. Correlating δ13c and δ18o in cellulose of trees.
Plant, Cell & Environment, 20(12):1543–1550, 1997. doi: 10.1046/j.1365-3040.1997.
d01-53.x.

L. D. S. Sternberg, M. J. Deniro, and R. A. Savidge. Oxygen isotope exchange between
metabolites and water during biochemical reactions leading to cellulose synthesis.
Plant Physiology, 82(2):423–427, 1986. doi: 10.1104/pp.82.2.423.

E. E. Stigter, M. Litt, J. F. Steiner, P. N. Bonekamp, J. M. Shea, M. F. Bierkens,
and W. W. Immerzeel. The importance of snow sublimation on a himalayan glacier.
Frontiers in Earth Science, Cryosphere, 6, 2018. doi: 10.3389/feart.2018.00108.

BIBLIOGRAPHY 116

P. Szejner, W. E. Wright, S. Belmecheri, D. Meko, S. W. Leavitt, J. R. Ehleringer,
and R. K. Monson. Disentangling seasonal and interannual legacies from inferred
patterns of forest water and carbon cycling using tree-ring stable isotopes. Global
change biology, 24(11):5332–5347, 2018. doi: 10.1111/gcb.14395.

L. van Kampenhout, J. T. Lenaerts, W. H. Lipscomb, W. J. Sacks, D. M. Lawrence,
A. G. Slater, and M. R. van den Broeke. Improving the representation of polar snow
and firn in the community earth system model. Journal of Advances in Modeling
Earth Systems, 9(7):2583–2600, 2017. doi: 10.1002/2017MS000988.

D. Yakir. Variations in the natural abundance of oxygen-18 and deuterium in plant
carbohydrates. Plant, Cell & Environment, 15(9):1005–1020, 1992. doi: 10.1111/j.
1365-3040.1992.tb01652.x.

Appendix A: MAIDENiso outputs

117

Output C++ variable File Type Unit Definition
period alloc->period outalloc_d daily NA Phenological period
Acanopy photo->A_canopy outalloc_d daily gC / m^2 stand / d Gross Primary Production (GPP)
AutoR alloc->auto_resp outalloc_d daily gC / m^2 stand / d Autothrophic respiration
Anet alloc->A_net outalloc_d daily gC / m^2 stand / d Net production
Cleaf alloc->C_leaf outalloc_d daily gC / m^2 stand Leaf carbon store
Croot alloc->C_root outalloc_d daily gC / m^2 stand Root carbon store
Cstem alloc->C_stem outalloc_d daily gC / m^2 stand Stem carbon store
Cstor alloc->C_stor outalloc_d daily gC / m^2 stand Reserve carbon store
in_leaf alloc->inC_leaf outalloc_d daily gC / m^2 stand Leaf carbon daily input
in_root alloc->inC_root outalloc_d daily gC / m^2 stand Root carbon daily input
in_stem alloc->inC_stem outalloc_d daily gC / m^2 stand Stem carbon daily input
in_stor alloc->inC_stor outalloc_d daily gC / m^2 stand Reserve carbon daily input
out_leaf alloc->outC_leaf outalloc_d daily gC / m^2 stand Leaf carbon daily output
out_root alloc->outC_root outalloc_d daily gC / m^2 stand Root carbon daily output
out_stem alloc->outC_stem outalloc_d daily gC / m^2 stand Stem carbon daily output
out_stor alloc->outC_stor outalloc_d daily gC / m^2 stand Reserve carbon daily output
d_leaf alloc->dC_leaf outalloc_d daily gC / m^2 stand Leaf carbon daily change
d_root alloc->dC_root outalloc_d daily gC / m^2 stand Root carbon daily change
d_stem alloc->dC_stem outalloc_d daily gC / m^2 stand Stem carbon daily change
d_stor alloc->dC_stor outalloc_d daily gC / m^2 stand Reserve carbon daily change
lai alloc->LAI outalloc_d daily NA Leaf Area Index (LAI)
glumax alloc->glumax outalloc_d daily gC / m^2 stand Maximum storage capacity
day12 phenol->day12 outalloc_y yearly DOY Start of GDD accumulation period
day23 phenol->day23 outalloc_y yearly DOY Raw Budburst / Start day of growth period
day23_sp phenol->day23_sp outalloc_y yearly DOY Corrected Budburst
day3spr3sum alloc->day3spr3sum outalloc_y yearly DOY Start of Summer
day34 phenol->day34 outalloc_y yearly DOY Start of Autumn
day41 phenol->day41 outalloc_y yearly DOY Start of Winter
GPP alloc->GPP outalloc_y yearly gC / m^2 stand / y Yearly Gross Primary Production (GPP)
NPP alloc->NPP outalloc_y yearly gC / m^2 stand / y Yearly Net Primary Production (NPP)
auto_resp alloc->auto_resp_y outalloc_y yearly gC / m^2 stand / y Yearly Autotrophic Respiration
LAIyear alloc->LAI_year outalloc_y yearly gC / m^2 stand Maximum Leaf Area Index during the year
Dstem alloc->stemi outalloc_y yearly gC / m^2 stand Stem carbon yearly change
leaf alloc->C_leaf_year outalloc_y yearly gC / m^2 stand Maximum leaf carbon during the year
root alloc->C_root_year outalloc_y yearly gC / m^2 stand Maximum root carbon during the year
stem alloc->C_stem_year outalloc_y yearly gC / m^2 stand Maximum stem carbon during the year
stor alloc->C_stor_year outalloc_y yearly gC / m^2 stand Maximum reserve carbon during the year
in_leaf alloc->inC_leaf_y outalloc_y yearly gC / m^2 stand Leaf carbon yearly input

APPENDIX A. MAIDENISO OUTPUTS 118

Output C++ variable File Type Unit Definition

out_leaf alloc->outC_leaf_y outalloc_y yearly gC / m^2 stand Leaf carbon yearly output
in_root alloc->inC_root_y outalloc_y yearly gC / m^2 stand Root carbon yearly input
out_root alloc->outC_root_y outalloc_y yearly gC / m^2 stand Root carbon yearly output
in_stem alloc->inC_stem_y outalloc_y yearly gC / m^2 stand Stem carbon yearly input
out_stem alloc->outC_stem_y outalloc_y yearly gC / m^2 stand Stem carbon yearly output
in_stor alloc->inC_stor_y outalloc_y yearly gC / m^2 stand Reserve carbon yearly input
out_stor alloc->outC_stor_y outalloc_y yearly gC / m^2 stand Reserve carbon yearly output
stor_leaf alloc->stor_leaf outalloc_y yearly gC / m^2 stand Reserve storage in the leaves
stor_root alloc->stor_root outalloc_y yearly gC / m^2 stand Reserve storage in the roots
stor_stem alloc->stor_stem outalloc_y yearly gC / m^2 stand Reserve storage in the stem
npp_stor alloc->npp_stor outalloc_y yearly gC / m^2 stand Reserve carbon input during Summer and Autumn
c_balance alloc->c_balance outalloc_y yearly gC / m^2 stand Carbon balance: inputs - outputs (should be 0)
glumin alloc->glumin outalloc_y yearly gC / m^2 stand Maximum storage capacity
Cmax2 alloc->Cmax2 outalloc_y yearly gC / m^2 stand Canopy carbon target
T_previous meteo->T_previous_Y outalloc_y yearly C Average Summer temperature of previous year
Pspring meteo->Pspring outalloc_y yearly cm Spring precipitation of previous year
d2Hp d2H->precip outd2H daily permil Precipitation d2H
d2Hxylem d2H->xylem outd2H daily permil Xylem water d2H
d2Hsnow d2H->snow outd2H daily permil Snow ice d2H
d2Hsnowwat d2H->snowwat outd2H daily permil Snow water d2H
d2Hsw1 d2H->soil[0] outd2H daily permil Soil water d2H in layer 1
d2Hsw2 d2H->soil[1] outd2H daily permil Soil water d2H in layer 2
d2Hsw3 d2H->soil[2] outd2H daily permil Soil water d2H in layer 3
d2Hsw4 d2H->soil[3] outd2H daily permil Soil water d2H in layer 4
d2HTRC d2H->TRC outd2H daily permil Tree Ring Cellulose d2H
d2Hcanopy d2H->cws outd2H daily permil Canopy water d2H
d2Hevap d2H->Epot_through outd2H daily permil Evaporated water d2H
d2Hthrough d2H->through outd2H daily permil Throughfall d2H
d2Hvapor d2H->vapor outd2H daily permil Atmospheric water vapor d2H
d2Hsoilevap d2H->soilevap outd2H daily permil Soil evaporation d2H
d2Hsnowevap d2H->snowevap outd2H daily permil Snow evaporation d2H
Dd13C_TRC d13C->DTRC outd13C_d daily permil Discrimination against 13C
newd13Cstem d13C->TRCnew outd13C_d daily permil Tree Ring Cellulose d13C
d13C_stor d13C->stor outd13C_d daily permil Stored carbon d13C
d13C_CO2 d13C->d13CO2 outd13C_d daily permil Atmospheric d13C
alloc_stem alloc->inC_stem outd13C_d daily gC / m^2 stand Stem carbon daily input

APPENDIX A. MAIDENISO OUTPUTS 119

Output C++ variable File Type Unit Definition

CCi_CO2-ppmV d13C->CCi_CO2 outd13C_d daily permil Leaf-internal partial pressure of CO_2
CCa_CO2-ppmV meteo->s_CO2 outd13C_d daily ppm Atmospheric CO_2 concentration
D13C d13C->DTRC_y outd13C_y yearly permil Year-average discrimination against 13C, weighted with stem C
d13Cstem d13C->TRCnew_y outd13C_y yearly permil Year-average Tree Ring Cellulose d13C, weighted with stem C
d13CGPP var_mean outd13C_y yearly permil Year-average Tree Ring Cellulose d13C, weighted with GPP
d13CO2 d13C->d13CO2_y outd13C_y yearly permil Year-average atmospheric d13C, unweighted
CCi_CO2-ppmV d13C->CCi_CO2_y outd13C_y yearly permil Year-average CCi, weighted with stem C
CCa_CO2-ppmV d13C->CCa_CO2_y outd13C_y yearly permil Year-average CCa, weighted with stem C
C_ratio d13C->Cratio_y outd13C_y yearly permil Cci / Cca ratio
d18Orainfall d18O->precip outd18O_d daily permil Rainfall d18O
d18Osnowfall d18O->snowfall outd18O_d daily permil Snowfall d18O
d18Oxylem d18O->xylem outd18O_d daily permil Xylem water d18O
d18Osnow d18O->snow outd18O_d daily permil Snow ice d18O
d18Osnowwat d18O->snowwat outd18O_d daily permil Snow water d18O
d18Osw1 d18O->soil[0] outd18O_d daily permil Soil water d18O in layer 1
d18Osw2 d18O->soil[1] outd18O_d daily permil Soil water d18O in layer 2
d18Osw3 d18O->soil[2] outd18O_d daily permil Soil water d18O in layer 3
d18Osw4 d18O->soil[3] outd18O_d daily permil Soil water d18O in layer 4
d18Odrai d18O->drai outd18O_d daily permil Drainage water d18O
d18Orun d18O->srun outd18O_d daily permil Runoff water d18O
d18Oinfl d18O->infl outd18O_d daily permil Infiltrated water d18O
d18OTRC d18O->TRC outd18O_d daily permil Tree Ring Cellulose d18O
d18Ocanwat d18O->cws outd18O_d daily permil Canopy water d18O
d18Ocansnow d18O->css outd18O_d daily permil Canopy snow d18O
d18Oevap d18O->Epot_through outd18O_d daily permil Evaporated water d18O
d18Othrough d18O->through outd18O_d daily permil Throughfall d18O
d18Ovapor d18O->vapor outd18O_d daily permil Atmospheric water vapor d18O
d18Osoilevap d18O->soilevap outd18O_d daily permil Soil evaporation d18O
d18Osnowevap d18O->snowevap outd18O_d daily permil Snow evaporation d18O
d18Ostem d18O->TRC_y outd18O_y yearly permil Year-average Tree Ring Cellulose d18O, weighted with stem C
d18OGPP var_mean outd18O_y yearly permil Year-average Tree Ring Cellulose d18O, weighted with GPP
d18Oxylem d18O->xylem_y outd18O_y yearly permil Year-average xylem water d18O
d18Ovapor d18O->vapor_y outd18O_y yearly permil Year-average atmospheric water vapor d18O
Tmax meteo->s_tmax outmet daily C Maximum atmospheric temperature
Tmin meteo->s_tmin outmet daily C Minimum atmospheric temperature
Tavg meteo->s_tavg outmet daily C Average atmospheric temperature

APPENDIX A. MAIDENISO OUTPUTS 120

Output C++ variable File Type Unit Definition

Tday meteo->s_tday outmet daily C Daylight temperature
TdayTr meteo->s_tday_transf outmet daily C Daylight transformed temperature
rain meteo->s_prcp outmet daily mm / d Rainfall
snow meteo->s_prcp_snow outmet daily mm / d Snowfall
VPD meteo->s_hum outmet daily Pa Vapor Pressure Deficit
srad meteo->s_srad outmet daily W / m^2 Solar radiation
daylen meteo->s_dayl outmet daily s Daylight length
PAR meteo->s_par outmet daily W / m^2 Photosynthetically Active Radiation
gbh meteo->s_gbh outmet daily mol CO_2 / m^2 / s Boundary layer conductance (from Montheit)
gaer meteo->s_gaer outmet daily mol H_2O / m^2 / s Canopy aerodynamic conductance (from Montheit)
svp meteo->s_svp outmet daily Pa Saturated Vapor Pressure
avp meteo->s_avp outmet daily Pa Atmospheric Vapor Pressure
avp_mtclim meteo->avp_mtclim outmet daily Pa Transformed Atmospheric Vapor Pressure? Serves no purpose
srad_mtclim meteo->srad_mtclim outmet daily W / m^2 Transformed solar radiation? Serves no purpose
soilmm water->soil_mm outmet daily mm Soil water content (sum of all layers)
wstress water->stress outmet daily NA Stress from soil moisture
vpdstress photo->vpd_stress outmet daily NA Stress from vapor pressure deficit
atms_p meteo->s_pa outmet daily Pa Atmospheric pressure
PARsun rad->ppfd_per_plaisun outmet daily umol / m^2 / s Photosynthetic Photon Flux Density in the sunlight portion of the canopy
PARshade rad->ppfd_per_plaishade outmet daily umol / m^2 / s Photosynthetic Photon Flux Density in the shaded portion of the canopy
CO2 meteo->s_CO2 outmet daily ppm Atmospheric CO_2 concentration
RH? meteo->rh outmet daily NA Atmospheric Relative Humidity
RHavg meteo->rhavg outmet daily NA Average Relative Humidity
veg_phase phenol->veg_phase outphenol daily NA vegetation phase
sumdd phenol->sumdd outphenol daily C Accumulated sum of degree days
thawed water->thawed outphenol daily NA flag indicating if the soil is above the thawed threshold

laisun rad->plaisun outphoto daily NA Leaf Area Index (Sunlight portion)
laishade rad->plaishade outphoto daily NA Leaf Area Index (Shaded portion)
Anet alloc->A_net outphoto daily gC / m^2 stand / d Net production
Acanopy alloc->A_canopy outphoto daily gC / m^2 stand / d Gross Primary Production (GPP)
Asuncanopy alloc->A_sun_canopy outphoto daily gC / m^2 stand / d GPP from the sunlight canopy portion
Ashadecanopy alloc->A_shade_canopy outphoto daily gC / m^2 stand / d GPP from the shaded canopy portion
Asun photo->A_sun outphoto daily umol / m^2 GPP from the sunlight canopy portion
Ashade photo->A_shade outphoto daily umol / m^2 GPP from the shaded canopy portion

Ajsun photo->Aj_sun outphoto daily mmol / m^2 / s
CO_2 assimilation rate limited by RuBP regeneration (light limited/RuBP
limited) in the sunlight canopy portion

APPENDIX A. MAIDENISO OUTPUTS 121

Output C++ variable File Type Unit Definition

Ajshade photo->Aj_shade outphoto daily mmol / m^2 / s
CO_2 assimilation rate limited by RuBP regeneration (light limited/RuBP
limited) in the shaded canopy portion

Avsun photo->Av_sun outphoto daily mmol / m^2 / s
CO_2 assimilation rate limited by the amount and activity of Rubisco
(enzyme limited/RuBP saturated) in the sunlight canopy portion

Avshade photo->Av_shade outphoto daily mmol / m^2 / s
assimilation rate limited by the amount and activity of Rubisco (enzyme
limited/RuBP saturated) in the shaded canopy portion

Rday photo->Rday outphoto daily umol / m^2 / s Mitochondrial/dark respiration rate
gssun photo->gs_c_sun outphoto daily umol / m^2 / s Stomatal conductance from the sunlight canopy portion
gsshade photo->gs_c_shade outphoto daily umol / m^2 / s Stomatal conductance from the shaded canopy portion
cssun photo->Cs_sun outphoto daily Pa partial pressure of CO_2 in the sunlight canopy portion
csshade photo->Cs_shade outphoto daily Pa partial pressure of CO_2 in the shaded canopy portion
cisun photo->Ci_sun outphoto daily Pa Leaf-internal partial pressure of CO_2 in the sunlight canopy portion
cishade photo->Ci_shade outphoto daily Pa Leaf-internal partial pressure of CO_2 in the shaded canopy portion
Rdsun photo->Rd_sun outphoto daily umol / m^2 / s Mitochondrial/dark respiration rate in the sunlight canopy portion
Rdshade photo->Rd_shade outphoto daily umol / m^2 / s Mitochondrial/dark respiration rate in the shaded canopy portion
vmax photo->Vmax outphoto daily umol / m^2 / s Maximum carboxylation rate
km photo->Km outphoto daily Pa Effective Michaelis-Menten constant for carboxylation reactions
gamma photo->gamma outphoto daily Pa Compensation point in the absence of dark respiration
kc photo->Kc outphoto daily Pa Michaelis-Menten constant of Rubisco for carboxylation
ko photo->Ko outphoto daily Pa Michaelis-Menten constant of Rubisco for oxygenation
o2 photo->O2 outphoto daily Pa Partial pressure of O_2
jsun photo->J_sun outphoto daily umol / m^2 / s Electron transport rate in the sunlight canopy portion
jshade photo->J_shade outphoto daily umol / m^2 / s Electron transport rate in the shaded canopy portion
photostress photo->rh outphoto daily NA Stress for the photosynthesis (accounts for wstress and vpdstress)
wstress water->stress outphoto daily NA Stress from soil moisture
vpdstress photo->vpd_stress outphoto daily NA Stress from vapor pressure deficit
fpar rad->f_par_srad outrad daily NA Fraction of radiation that is PAR?
lai alloc->LAI outrad daily NA Leaf Area Index
laisun rad->plaisun outrad daily NA Leaf Area Index (Sunlight portion)
laishade rad->plaishade outrad daily NA Leaf Area Index (Shaded portion)
par meteo->s_par outrad daily W / m^2 Photosynthetically Active Radiation
partop rad->par_top outrad daily W / m^2 PAR not reflected by albedo
parabs rad->parabs outrad daily W / m^2 PAR absorbed
parabs_sun rad->parabs_plaisun outrad daily W / m^2 PAR absorbed by the sunlight canopy portion
parabs_shade rad->parabs_plaishade outrad daily W / m^2 PAR absorbed by the shaded canopy portion
parabs_sun rad->parabs_per_plaisun outrad daily W / m^2 PAR absorbed per LAI unit by the sunlight canopy portion

APPENDIX A. MAIDENISO OUTPUTS 122

Output C++ variable File Type Unit Definition

parabs_shade rad->parabs_per_plaishade outrad daily W / m^2 PAR absorbed per LAI unit by the shaded canopy portion
ppfd_sun rad->ppfd_per_plaisun outrad daily umol / m^2 / s Photosynthetic Photon Flux Density in the sunlight portion of the canopy
ppfd_shade rad->ppfd_per_plaishade outrad daily umol / m^2 / s Photosynthetic Photon Flux Density in the shaded portion of the canopy
Root1 soil->root[0] outroot daily NA Root fraction in soil layer 1
Root2 soil->root[1] outroot daily NA Root fraction in soil layer 2
Root3 soil->root[2] outroot daily NA Root fraction in soil layer 3
Root4 soil->root[3] outroot daily NA Root fraction in soil layer 4
simul sum_d(alloc->inC_stem) outsim yearly NA Standarized (mean=1) stem growth
dzsnow(m) water->dzsnow outsnow daily m Thickness of the snow layer
h2osnow(kg) water->h2osnow outsnow daily kg / m^2 Liquid water content of the snow layer
icesnow(kg) water->icesnow outsnow daily kg / m^2 Solid water content of the snow layer
density(kg/m) water->icesnow/water->dzsnow outsnow daily kg / m^3 Density of the ice in the snow layer
si[1](%) water->si[0] outsnow daily NA Volumetric fraction of ice content in soil layer 1
si[2](%) water->si[1] outsnow daily NA Volumetric fraction of ice content in soil layer 2
si[3](%) water->si[2] outsnow daily NA Volumetric fraction of ice content in soil layer 3
si[4](%) water->si[3] outsnow daily NA Volumetric fraction of ice content in soil layer 4
sm1 water->sm[0] outsoil daily NA Volumetric fraction of water content in soil layer 1
sm2 water->sm[1] outsoil daily NA Volumetric fraction of water content in soil layer 2
sm3 water->sm[2] outsoil daily NA Volumetric fraction of water content in soil layer 3
sm4 water->sm[3] outsoil daily NA Volumetric fraction of water content in soil layer 4
swp1 water->swp[0] outsoil daily NA Soil water potential (x -1) of layer 1
swp2 water->swp[1] outsoil daily NA Soil water potential (x -1) of layer 2
swp3 water->swp[2] outsoil daily NA Soil water potential (x -1) of layer 3
swp4 water->swp[3] outsoil daily NA Soil water potential (x -1) of layer 4
soilmm water->soil_mm outsoil daily mm Soil water content (sum of all layers)
soilice water->ice_mm outsoil daily mm Soil ice content (sum of all layers)
Se water->se outsoilev daily mm / d Soil water evaporation
Ss water->ss outsoilev daily mm / d Soil ice sublimation
time meteo->s_dayl outsoilev daily s Daylight length
Epot water->Epot_se outsoilev daily kg / m^2 / s Potential evaporation
aird soilev->aird outsoilev daily kg / m^3 Air density
satmrl soilev->satmrl outsoilev daily Pa / Pa Saturated mixing ratio
soilrhl soilev->soilrhl outsoilev daily NA Soil Relative Humidity
arh meteo->rh outsoilev daily NA Atmospheric Relative Humidity
rsoil soilev->rsoil outsoilev daily s / m Soil resistance to evaporation
ra soilev->ra outsoilev daily NA Unknown

APPENDIX A. MAIDENISO OUTPUTS 123

Output C++ variable File Type Unit Definition

Tatm meteo->s_tavg outtemp daily C Average atmospheric temperature
Tsnow soil->temp[0] outtemp daily C Temperature of the snow layer
T1 soil->temp[1] outtemp daily C Temperature of soil layer 1
T2 soil->temp[2] outtemp daily C Temperature of soil layer 2
T3 soil->temp[3] outtemp daily C Temperature of soil layer 3
T4 soil->temp[4] outtemp daily C Temperature of soil layer 4
ct water_an->ct outwatbalance yearly mm Transpired canopy water
ddr water_an->ddr outwatbalance yearly mm Drained (percolated) soil water
se water_an->se outwatbalance yearly mm Evaporated water
ss water_an->ss outwatbalance yearly mm Sublimated ice/snow
through water_an->through outwatbalance yearly mm Throughfall
prcp water_an->prcp outwatbalance yearly mm Precipitation
srun water_an->srun outwatbalance yearly mm Runoff
intercept water_an->intercept outwatbalance yearly mm Intercepted precipitation
inf water_an->inf outwatbalance yearly mm Infiltration
delta.sm water_an->delta_sm outwatbalance yearly mm Increase in soil moisture
init.sm water_an->sm_initial outwatbalance yearly mm Initial soil moisture
fin.sm water_an->sm_final outwatbalance yearly mm Final soil moisture
w_balance water_an->w_balance outwatbalance yearly mm Water balance (should be 0)
prcp meteo->s_prcp+meteo->s_prcp_snow outwater daily mm Precipitation
pdirect water->pdirect+water->psnowdirect outwater daily mm Direct precipitation
through water->through+water->through_snow outwater daily mm Throughfall
intercept water->intercept outwater daily mm Intercepted precipitation
canopy_snow water->canopy_snow outwater daily mm Precipitation
se water->se outwater daily mm Evaporated water
ss water->ss outwater daily mm Sublimated ice/snow
inf water->inf outwater daily mm Infiltration
srun water->srun outwater daily mm Runoff
ct water->ct outwater daily mm Transpired canopy water
ddr water->ddr outwater daily mm Drained (percolated) soil water
soil_water water->soil_mm outwater daily mm Soil water content (sum of all layers)
Epot_through water->Epot_through outwater daily mm Evaporated canopy water
Epot_through_snow water->Epot_through_snow outwater daily mm Sublimated canopy snow
Epot_se water->Epot_se outwater daily kg / m^2 / s Potential evaporation
lai alloc->LAI outwater daily NA Leaf Area Index (LAI)
wstress water->stress outwater daily NA Stress from soil moisture

APPENDIX A. MAIDENISO OUTPUTS 124

Output C++ variable File Type Unit Definition

vpdstress photo->vpd_stress outwater daily NA Stress from vapor pressure deficit
photostress photo->rh outwater daily NA Stress for the photosynthesis (accounts for wstress and vpdstress)
soil_rh water->soil_rh outwater daily NA Soil Relative Humidity
r_soil water->r_soil outwater daily s / m Soil resistance to evaporation
sat_mr water->sat_mr outwater daily Pa / Pa Saturated mixing ratio
airrh meteo->rh outwater daily NA Atmospheric Relative Humidity

s_swe meteo->s_swe outwater daily cm
Snowpack thickness (preliminary calculation, different from the actual
snow layer)

APPENDIX A. MAIDENISO OUTPUTS 125

	I User Guide
	Overview
	Preamble
	First User Manual

	Installation
	Installing a C++ compiler
	Windows installation
	MacOSX installation
	Ubuntu installation

	Downloading MAIDENiso
	Compiling MAIDENiso

	Running MAIDENiso
	Inputs
	Inmet file
	Inpar file

	Outputs

	The simulation process
	State and process variables
	Initial conditions and steady state
	Run, training, and simulation

	The C++ code
	Files
	Functions
	Variables
	Structured variables
	Use of pointers in functions

	Modifying the code
	Best practices
	Adding an element

	Troubleshooting
	Segmentation fault
	NaN or strange values in the output files
	Messed-up time fields in output files

	II Technical Description
	Introduction
	Model history
	New developments in MAIDENiso v4

	Time notation

	Atmosphere
	Input meteorology
	Temperature
	Precipitation

	Atmospheric pressure
	Potential evapotranspiration
	Humidity
	Canopy layer conductance

	Radiation
	Transmitance
	Sky proportion
	Daily Radiation
	Dew temperature

	Throughfall
	Precipitation
	Solid/Liquid precipitation
	Snow blow
	Direct precipitation

	Canopy water
	Canopy interception
	Canopy evaporation
	Canopy drip

	Surface hydrology
	Snow
	Snow pack dynamics
	Snow water

	Infiltration and runoff
	Soil water
	Hydrological properties
	Numerical solution

	Soil evaporation
	Snow evaporation/sublimation
	Thawed root threshold

	Soil and snow temperatures
	Thermal properties of soil and snow
	Thermal conductivity
	Heat capacity

	Thermal conduction
	Phase change

	Isotopes
	Carbon isotopes
	Discrimination against C isotopes
	Isotopic composition of carbon stored
	Isotopic composition of tree rings

	Water isotopes
	Isotopic composition of precipitation
	Isotopic mixing
	Fractionation processes
	Tree-ring cellulose

	Phenology
	Phenology phases and allocation periods
	Phenological phases
	Phase transitions

	Carbon allocation
	Autotrophic respiration and NPP
	Tree carbon pools
	Leaf Area Index

	Canopy target
	Mediterranean model
	Boreal model

	Yearly Carbon demand
	Leaf losses
	Carbon allocation periods
	Period transitions

	Carbon allocation rules
	Winter allocation
	Spring allocation
	Summer allocation
	Fall allocation

	Photosynthesis
	Photosynthesis model
	Stomatal conductance model
	Scaling photosynthesis from leaf to canopy: a two canopy layers approach
	Transpiration

	MAIDENiso outputs

